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In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
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All of the above constructions/transformations also satisfy/preserve zero-knowledge!
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Fix NP language L

Common Reference String (Crs)

qu + Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x, )

« Completeness: If R(x,w) = 1, then 7' (crs, L(crs, x,w)) = 1.
» Soundness: For all ppt &°*, hard to come up with cheating proof for x™* & L.

Pr[(x*, n*) <« P*(crs) Ax* & L A7 (crs,x*, n*) = 1] < negl(4)

Crs
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Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:
 Optimal Broadcast Encryption and CP-ABE [Wee?22]

* Witness Encryption [Tsabary22, VWW?22], Null-iO [VWW22]
* Multi-Authority ABE [WWW?22]

 ABE for unbounded depth circuits [HLL23]
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UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

Examples of languages:
o ImF = {x |dys.t. F(y) = x} where F is an injective function
« Factor = {N | d primesp < gs.t. N = pqg}

« DDH = {(g,a,b,c) |dx,y st.a=¢g",b=g",c = g"}
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Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).

Fix distributions S, B and P.
B~!(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'P)=P

then  (SB,B~'(P)) ~. (%,B~(P))

 Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the
so-called “zeroizing regime”. Evasive LWE seems to avoid this.

e |dea: Collect many equations on low-norm secrets over low-norm
constants. Solve over integers!
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Zeroizing attacks

Extreme example: Suppose SP = 0. Then, given SB + E and B~ '(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

Now, we can solve for K over integers, because everything on RHS has
low-norm.

With E in the clear, no more LWE guarantees on SB + E!
Similar attack works for §£ with correlated rows.

Evasive LWE: This is the only attack! Doesn’t work if SP were uniform.

R a v o™ o
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“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (@(Fk)’ aux) ~ (@’ aUX) (i.e. the Obffﬁ;fttiﬁ: Cl)euett:;itr;?thing more

Follows techniqgues of [GGH15] and generalises [VWW?22].
Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

Use this obfuscation to instantiate a “Sahai-Waters”-like SNARG. More details later!
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 Succinct Non-Interactive Argument of Knowledge @ F xt
* One can extract a witness from accepting X »
proofs, i.e. the prover must “know” the e,
witness. cewing €€ - Crs; repeat poly
* Recall: Regular SNARG definition has no & X G times

soundness guarantees if a prover does NOt --rr-eree e

know a withess forx € L. Output w such that
R(x,w) =1

« SNARKSs “compose better” than SNARGs with Knowledge soundness: JExt, if & can

cryptographic objects create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

 E.g. Somewhere extractable BARGs
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SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively
sound SNARG for UP can be used to construct an adaptively
sound SNARK for UP, while preserving zero-knowledge.

e QOur transformation follows [CGKS23] who show a similar transformation from
SNARG for NP to SNARK for UP.

e \We also correct some issues In their work:

* Their transformation (as is) is not zero-knowledge and requires adaptive
SNARGs for NP.
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Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[ </ wins] > ¢ + negl(A).

e/ 151

* E.g. Decision problems like DDH
and LWE have parameter ¢ = 1/2

* E.g. Search problems like OWF,
DLOG have parameter ¢ = 0

Outputs win
or lose
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(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

10(C) Takes up to 2

time to check

b’ ~ Acceptifb = b’/

and C, = (,
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(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

* One interpretation: One has to rely on sub-exponential hardness assumptions to obtain
adaptive soundness.

* Issue: It is not clear that one can maintain succinctness while doing this.

* Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain
succinctness.

 No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to
Feb 2024%).
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e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

 Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can
be made adaptively sound in the designated verifier setting with no
additional assumptions.

e Corollary: Adaptively sound dv-zkSNARKSs for UP from either
« LWE and evasive LWE

 LWE, subexponentially-secure 10, subexponentially-secure OWF
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Concurrent works

 Beautiful concurrent works [WW24, WZ24] construct adaptively secure
publicly verifiable SNARGs for NP.

o [WW24] Sub-exponential IO + OWF, hardness of factoring/discrete log.
o [WZ24] Sub-exponential iO + OWF, LWE.

» Corollary: Publicly verifiable SNARKSs for UP using our/[CGKS23] compiler.
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TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
 Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
3. Transformation from SNARG for UP to SNARK for UP.
* Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!
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Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
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We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wWPRF . Gen(R).
Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.
Our UP SNARG: Adaptive witness PRF for UP from evasive LWE.
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Sahai-Waters Withess PRF

» Public key: Let PRF be a puncturable ¢ Correctness: If R(x, w) = 1, then
PRF. Key is the obfuscation of this: obfuscation outputs PRF;(x).

« Non-adaptive security: If x™ & L,
Ptonezlé(&va)) = 1, output PRF,(x) replace k in obfuscation with
- Else, output 1 punctured key k{x*}.

------------------------------------------------- k, PRF.(x)) ~ k', r
 Secret key: PRF Key k. (p (X)) =, (pK’, 7)
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State = skcj>

n = Evaly (x, w)

Claim: For x™ & L,
(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

. Accept if 1 = F (x)

Witness PRF to SNARG Template

Witness PRF for R
(pk, sk) < wPRF . Gen(R).

Correctness: If R(x, w) = 1,
Eval, (x, w) = F (x).

Security: If x &€ L, pk hides the

value of F (x), i.e. F(x) looks
random.
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Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random e
x* ¢ L >
pk - pk, yb y() p— Fsk(x*),yl = 7
< x,

» Ifx" = x*, you get

< Vb an advantage, else, Advantage: Adv(&[’)/2|x|
flip a coin '
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Witness PRF to SNARG Template

9P crs = pk /4

« The length of 7 is depends only on
security parameter of the SNARG!

State = Skc]'>  Can decouple the wPRF security
indistinguishability parameter
from proof search size.

n = Eval,(x, w) vt Accept if 7 = F, (x) P

« We can choose proof size ~ A for

_ 2~* soundness!
Claim: For x* & L,

(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.



TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE



TL;DR

Build a withess PRF for UP from

. evasive LWE
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE



Withess PRF from Evasive LWE



Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.




Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.



Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2



Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2

This is a PRF if R is a UP relation. If not UP, then this might not hold!



Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'
F Kl(x) if R(x,w) =1

%4 , W) =

Kl’K2(x W) GKz(x, w) otherwise

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)



Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)

» Step 3: Construct wPRF: pk = O(W), sk = K. The obfuscation guarantee, for x* & L:
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 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'
F Kl(x) if R(x,w) =1

%4 , W) =

Kl’K2(x W) GKz(x, w) otherwise

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)

» Step 3: Construct wPRF: pk = O(W), sk = K. The obfuscation guarantee, for x* & L:
(pk, Fie (%)) =, (pk, 7)
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Summary

 \We build adaptively sound designated-verifier SNARGs for:
« UP from LWE and evasive LWE
NP from sub-exponential iO + OWF

» We show that adaptively sound SNARGs for UP can be transformed into
SNARKSs for UP assuming polynomially secure LWE.

 We can build SNARKSs from falsifiable assumptions!



Open Questions



Open Questions

 Can we construct withess PRFs directly from LWE?



Open Questions

 Can we construct withess PRFs directly from LWE?

 Can we prove evasive LWE from LWE?



Open Questions

 Can we construct withess PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?



Open Questions

 Can we construct withess PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?

 Can we transform our SNARG into a publicly verifiable SNARG?



Open Questions

 Can we construct withess PRFs directly from LWE?

 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?

 Can we transform our SNARG into a publicly verifiable SNARG?

 Have to be very careful about zeroizing attacks!



Open Questions

Can we construct witness PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

What else can we prove from evasive LWE that we can build from
obfuscation?

Can we transform our SNARG into a publicly verifiable SNARG?
 Have to be very careful about zeroizing attacks!

Can we get a SNARG with a smaller CRS? Can we get a common random/
transparent string”?



Thank you very much for
your attention!
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» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

{u (HMiaxi) V} , dUX = {%}XE{O,l}k’ dUX

x€{0,1}%

(i.e. the function is a “very secure PRF”
when noise is added)

» Then, our obfuscation guarantees that (O(P), aux) = (<, aux).

(I.e. the obfuscation leaks nothing more
than the outputs)
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Simplified Obfuscation Construction

» Step 1: Consider a read-once branching program PRF £ : {0,1 W' — Y given
byu, {Mi,b}ié[h],bE{O,l}a V Satisfying: Take the subset product!

h /
F(x)=u (HM) v
=1

o Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching
program.
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All possible evaluatﬂ products are of the form:
SB — {uMl,leZ,x2A2 + lSl,XISZ,Xzﬁ}Xl,Xze{O,l}

pseudorandom (with noise) by LWE!

« Sample §;;, < ¥ (i.e.
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S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF




GH15 Encodlngs

. Sample §; ;, < x
small entries)
» Sample A, with a trapdoor

CXC (

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

All possible evaluatﬂ products are of the form: P

. {uMl,MMz’szz + ISLXISZ,XZ&}XD%E{OJ} _
pseudorandom (with noise) by LWE!
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* Repeatedly apply evasive LWE!
» Shrunk the size from 2" evaluated products to size to 2/ matrices.
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