
Adaptively Sound 
Zero-Knowledge SNARKs for UP

Spencer Peters 
Cornell University

Surya Mathialagan
MIT

Vinod Vaikuntanathan
MIT



TL;DR



TL;DR
In this work, we



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 

• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 

• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 

• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.



TL;DR
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 

• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!



Succinct Non-interactive ARGument

𝒫 𝒱

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument
Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

π = 𝒫(𝖼𝗋𝗌, x, w)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w) 𝒱(𝖼𝗋𝗌, x, π)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w) 𝒱(𝖼𝗋𝗌, x, π)

• Completeness: If , then .R(x, w) = 1 𝒱(𝖼𝗋𝗌, 𝒫(𝖼𝗋𝗌, x, w)) = 1

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w) 𝒱(𝖼𝗋𝗌, x, π)

• Completeness: If , then .R(x, w) = 1 𝒱(𝖼𝗋𝗌, 𝒫(𝖼𝗋𝗌, x, w)) = 1

• Soundness: For all ppt , hard to come up with cheating proof for :𝒫* x* ∉ L

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w) 𝒱(𝖼𝗋𝗌, x, π)

• Completeness: If , then .R(x, w) = 1 𝒱(𝖼𝗋𝗌, 𝒫(𝖼𝗋𝗌, x, w)) = 1

• Soundness: For all ppt , hard to come up with cheating proof for :𝒫* x* ∉ L

Common Reference String ( )𝖼𝗋𝗌

𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w

𝒫*



Succinct Non-interactive ARGument

x, π
π = 𝒫(𝖼𝗋𝗌, x, w) 𝒱(𝖼𝗋𝗌, x, π)

• Completeness: If , then .R(x, w) = 1 𝒱(𝖼𝗋𝗌, 𝒫(𝖼𝗋𝗌, x, w)) = 1

• Soundness: For all ppt , hard to come up with cheating proof for :𝒫* x* ∉ L

Pr
𝖼𝗋𝗌

[(x*, π*) ← 𝒫*(𝖼𝗋𝗌) ∧ x* ∉ L ∧ 𝒱(𝖼𝗋𝗌, x*, π*) = 1] ≤ 𝗇𝖾𝗀𝗅(λ)

Common Reference String ( )𝖼𝗋𝗌

𝒱Succinct:
|π | ≪ |w |

Fix NP language L

Instance , witness x w

𝒫*



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱
Secret verifier 

state ( )𝗌𝗄



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱
Secret verifier 

state ( )𝗌𝗄



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

𝒫 𝒱

Reusable soundness: 
Soundness holds even when 

 has black-box access to 𝒫* 𝒱

Secret verifier 
state ( )𝗌𝗄



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

𝒱

Reusable soundness: 
Soundness holds even when 

 has black-box access to 𝒫* 𝒱

Secret verifier 
state ( )𝗌𝗄

𝒫*



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

𝒱

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍

Reusable soundness: 
Soundness holds even when 

 has black-box access to 𝒫* 𝒱

Secret verifier 
state ( )𝗌𝗄

𝒫*



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

x2, π2

𝒱

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍
Reusable soundness: 

Soundness holds even when 
 has black-box access to 𝒫* 𝒱

Secret verifier 
state ( )𝗌𝗄

𝒫*



Designated-Verifier SNARG

x, ππ = 𝒫(𝖼𝗋𝗌, x, w)
𝒱(𝗌𝗄, x, π)

Common Reference String ( )𝖼𝗋𝗌

x2, π2

x3, π3

𝒱

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍

𝖠𝖼𝖼𝖾𝗉𝗍/𝖱𝖾𝗃𝖾𝖼𝗍

Reusable soundness: 
Soundness holds even when 

 has black-box access to 𝒫* 𝒱

Secret verifier 
state ( )𝗌𝗄

𝒫*



State of SNARGs



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]

LWE/Other Polynomially 
Falsifiable Assumptions

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22], 
Monotone-Policy Batch-NP [BBKLP23],  Some of NP ∩ CoNP [JKLV24], 

many more!



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]

LWE/Other Polynomially 
Falsifiable Assumptions

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22], 
Monotone-Policy Batch-NP [BBKLP23],  Some of NP ∩ CoNP [JKLV24], 

many more!

NP!



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]

LWE/Other Polynomially 
Falsifiable Assumptions

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22], 
Monotone-Policy Batch-NP [BBKLP23],  Some of NP ∩ CoNP [JKLV24], 

many more!

NP!

NP!



State of SNARGs

ROM/Knowledge 
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and 
many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]

LWE/Other Polynomially 
Falsifiable Assumptions

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22], 
Monotone-Policy Batch-NP [BBKLP23],  Some of NP ∩ CoNP [JKLV24], 

many more!

NP!

NP!

Not yet at NP, 
even in dv 

setting



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

LWE
Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

ObfuscationLWE
Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

ObfuscationLWE
Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

ObfuscationLWE
Evasive 

LWE

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:

ObfuscationLWE
Evasive 

LWE

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:
• Optimal Broadcast Encryption and CP-ABE [Wee22]

ObfuscationLWE
Evasive 

LWE

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:
• Optimal Broadcast Encryption and CP-ABE [Wee22]
• Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]

ObfuscationLWE
Evasive 

LWE

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:
• Optimal Broadcast Encryption and CP-ABE [Wee22]
• Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
• Multi-Authority ABE [WWW22]

ObfuscationLWE
Evasive 

LWE

Big Picture:



Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:
• Optimal Broadcast Encryption and CP-ABE [Wee22]
• Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
• Multi-Authority ABE [WWW22]
• ABE for unbounded depth circuits [HLL23]

ObfuscationLWE
Evasive 

LWE

Big Picture:



UP (or “Unique” P)



UP (or “Unique” P)
• UP = NP language which has a relation R such that if there exists 

exactly one witness  such that .
x ∈ L,

w R(x, w) = 1



UP (or “Unique” P)
• UP = NP language which has a relation R such that if there exists 

exactly one witness  such that .
x ∈ L,

w R(x, w) = 1

Examples of languages:



UP (or “Unique” P)
• UP = NP language which has a relation R such that if there exists 

exactly one witness  such that .
x ∈ L,

w R(x, w) = 1

Examples of languages:

•  where  is an injective function𝖨𝗆𝖥 = {x |∃y s.t. F(y) = x} F



UP (or “Unique” P)
• UP = NP language which has a relation R such that if there exists 

exactly one witness  such that .
x ∈ L,

w R(x, w) = 1

Examples of languages:

•  where  is an injective function𝖨𝗆𝖥 = {x |∃y s.t. F(y) = x} F

• 𝖥𝖺𝖼𝗍𝗈𝗋 = {N | ∃ primes p ≤ q s.t. N = pq}



UP (or “Unique” P)
• UP = NP language which has a relation R such that if there exists 

exactly one witness  such that .
x ∈ L,

w R(x, w) = 1

Examples of languages:

•  where  is an injective function𝖨𝗆𝖥 = {x |∃y s.t. F(y) = x} F

• 𝖥𝖺𝖼𝗍𝗈𝗋 = {N | ∃ primes p ≤ q s.t. N = pq}

• 𝖣𝖣𝖧 = {(g, a, b, c) |∃x, y  s.t. a = gx, b = gy, c = gxy}



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if Throughout this talk, squiggly 
lines indicate noise



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then

 is a Gaussian pre-
image sample such that 

B−1(P)

B ⋅ B−1(P) = P



Tool: Evasive LWE
Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and  (possibly correlated).S, B P

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then

 is a Gaussian pre-
image sample such that 

B−1(P)

B ⋅ B−1(P) = P

Intuition: Given  and , can compute , and not 
much else.

SB B−1(P) SB ⋅ B−1(P) ≈ SP



Tool: Evasive LWE

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then

 is a Gaussian pre-
image sample such that 

B−1(P)

B ⋅ B−1(P) = P

Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and .S, B P



Tool: Evasive LWE

• Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the 
so-called “zeroizing regime”. Evasive LWE seems to avoid this.

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then

 is a Gaussian pre-
image sample such that 

B−1(P)

B ⋅ B−1(P) = P

Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and .S, B P



Tool: Evasive LWE

• Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the 
so-called “zeroizing regime”. Evasive LWE seems to avoid this.
• Idea: Collect many equations on low-norm secrets over low-norm 

constants. Solve over integers!

(SB, SP) ≈c (𝒰, 𝒰)if

(SB, B−1(P)) ≈c (𝒰, B−1(P))then

 is a Gaussian pre-
image sample such that 

B−1(P)

B ⋅ B−1(P) = P

Proposed by Wee (Eurocrypt ’22). 
Fix distributions  and .S, B P



Zeroizing attacks



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)

• Now, we can solve for  over integers, because everything on RHS has 
low-norm. 

E



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)

• Now, we can solve for  over integers, because everything on RHS has 
low-norm. 

E

• With  in the clear, no more LWE guarantees on !E SB + E



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)

• Now, we can solve for  over integers, because everything on RHS has 
low-norm. 

E

• With  in the clear, no more LWE guarantees on !E SB + E

• Similar attack works for  with correlated rows.SP



Zeroizing attacks
• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)

• Now, we can solve for  over integers, because everything on RHS has 
low-norm. 

E

• With  in the clear, no more LWE guarantees on !E SB + E

• Similar attack works for  with correlated rows.SP

• Evasive LWE: This is the only attack! Doesn’t work if  were uniform.SP



Main Tool



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if (i.e. the function is a “very secure PRF”) 



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if

(𝒪(Fk), 𝖺𝗎𝗑) ≈ (𝒟, 𝖺𝗎𝗑)then

(i.e. the function is a “very secure PRF”) 



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if

(𝒪(Fk), 𝖺𝗎𝗑) ≈ (𝒟, 𝖺𝗎𝗑)then

(i.e. the function is a “very secure PRF”) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if

(𝒪(Fk), 𝖺𝗎𝗑) ≈ (𝒟, 𝖺𝗎𝗑)then

• Follows techniques of [GGH15] and generalises [VWW22]. 

(i.e. the function is a “very secure PRF”) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if

(𝒪(Fk), 𝖺𝗎𝗑) ≈ (𝒟, 𝖺𝗎𝗑)then

• Follows techniques of [GGH15] and generalises [VWW22]. 

• Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

(i.e. the function is a “very secure PRF”) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 



Main Tool
• Using evasive LWE, we construct a new “average-case obfuscation”  for 

“matrix programs”  with roughly the following guarantee (over ):
𝒪

{Fk}k∈K k ← K

({Fk(x)}x, 𝖺𝗎𝗑) ≈ (𝒰, 𝖺𝗎𝗑)if

(𝒪(Fk), 𝖺𝗎𝗑) ≈ (𝒟, 𝖺𝗎𝗑)then

• Follows techniques of [GGH15] and generalises [VWW22]. 

• Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

• Use this obfuscation to instantiate a “Sahai-Waters”-like SNARG. More details later!

(i.e. the function is a “very secure PRF”) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 



TL;DR



TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!



SNARGs vs. SNARKs



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍
x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍
x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

• SNARKs “compose better” than SNARGs with 
cryptographic objects

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

• SNARKs “compose better” than SNARGs with 
cryptographic objects

• E.g. Somewhere extractable BARGs

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



Barrier to SNARKs for NP



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍
x



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍
x



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

w1



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

Rewind

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

𝖼𝗋𝗌2

π3

w3

Rewind

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

• Hard to piece together a single witness! 
Can be formalised in terms of leakage 
resilience. 

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

𝖼𝗋𝗌2

π3

w3

Rewind

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]

• Each proof is a “small leakage” on a 
witness. 

• The prover might use a different 
witness each time!

• Hard to piece together a single witness! 
Can be formalised in terms of leakage 
resilience. 

• Impossibility doesn’t hold for !𝖴𝖯

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

𝖼𝗋𝗌2

π3

w3

Rewind

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]


• Each proof is a “small leakage” on a 
witness. 


• The prover might use a different 
witness each time!


• Hard to piece together a single witness! 
Can be formalised in terms of leakage 
resilience. 


• Impossibility doesn’t hold for !𝖴𝖯

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

𝖼𝗋𝗌2

π3

w3

Rewind

Rewind



Barrier to SNARKs for NP
• Black-box extraction is impossible for all of 

NP from falsifiable assumptions! [CGKS23]


• Each proof is a “small leakage” on a 
witness. 


• The prover might use a different 
witness each time!


• Hard to piece together a single witness! 
Can be formalised in terms of leakage 
resilience. 


• Impossibility doesn’t hold for !𝖴𝖯

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌1

x

π1

w1

𝖼𝗋𝗌2

π2

w2

𝖼𝗋𝗌2

π3

w3

Rewind

Rewind

Qn: Can we build SNARKs for  from falsifiable assumptions?𝖴𝖯



SNARG to SNARK for UP
Theorem 2: Assuming polynomial hardness of LWE, an adaptively 

sound SNARG for UP can be used to construct an adaptively 
sound SNARK for UP, while preserving zero-knowledge.



SNARG to SNARK for UP
Theorem 2: Assuming polynomial hardness of LWE, an adaptively 

sound SNARG for UP can be used to construct an adaptively 
sound SNARK for UP, while preserving zero-knowledge.

• Our transformation follows [CGKS23] who show a similar transformation from 
SNARG for NP to SNARK for UP.



SNARG to SNARK for UP
Theorem 2: Assuming polynomial hardness of LWE, an adaptively 

sound SNARG for UP can be used to construct an adaptively 
sound SNARK for UP, while preserving zero-knowledge.

• Our transformation follows [CGKS23] who show a similar transformation from 
SNARG for NP to SNARK for UP.

• We also correct some issues in their work: 



SNARG to SNARK for UP
Theorem 2: Assuming polynomial hardness of LWE, an adaptively 

sound SNARG for UP can be used to construct an adaptively 
sound SNARK for UP, while preserving zero-knowledge.

• Our transformation follows [CGKS23] who show a similar transformation from 
SNARG for NP to SNARK for UP.

• We also correct some issues in their work: 

• Their transformation (as is) is not zero-knowledge and requires adaptive 
SNARGs for NP.



Adaptive vs. Non-Adaptive Soundness

𝒫* 𝒱 𝒫* 𝒱

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 𝒫* 𝒱

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 𝒫* 𝒱

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L𝒫* 𝒱

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱

π*

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱

π*

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ

Adaptive Soundness Non-Adaptive Soundness



Adaptive vs. Non-Adaptive Soundness

x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱

π*

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ

Adaptive Soundness Non-Adaptive Soundness

Intuition: How can you tell if 
soundness was broken? Need to 

decide if x* ∈ L!



Falsifiable Assumptions



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)

𝒜 𝒞



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)

𝒜 𝒞



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)

𝒜 𝒞

Outputs win 

or lose



Falsifiable Assumptions
• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)

𝒜 𝒞

Outputs win 

or lose

• E.g. Decision problems like DDH 
and LWE have parameter  


• E.g. Search problems like OWF, 
DLOG have parameter 

c = 1/2

c = 0



(Non-)Examples of Falsifiable Assumptions



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)

b′ 



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)

b′ Accept if b = b′ 



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)

b′ Accept if b = b′ 

and C1 ≡ C2



(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)

b′ Accept if b = b′ 

and C1 ≡ C2

Takes up to  
time to check

2|x|



Adaptive dvSNARK for UP



Adaptive dvSNARK for UPAdaptive dvSNARG for UP

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARK for UPAdaptive dvSNARG for UP

SNARG to SNARK 
Transformation



Gentry-Wichs Barrier

SNARGs from 
Falsifiable 

Assumptions



Gentry-Wichs Barrier

SNARGs from 
Falsifiable 

Assumptions



Gentry-Wichs Barrier
What is the password?

SNARGs from 
Falsifiable 

Assumptions



Gentry-Wichs Barrier
What is the password?

Exponential time reductionSNARGs from 
Falsifiable 

Assumptions



Gentry-Wichs Barrier
What is the password?

Exponential time reduction

You may proceed… 
with caution

SNARGs from 
Falsifiable 

Assumptions



Gentry-Wichs Barrier



Gentry-Wichs Barrier
(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ



Gentry-Wichs Barrier

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain 
adaptive soundness.

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ



Gentry-Wichs Barrier

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain 
adaptive soundness.

• Issue: It is not clear that one can maintain succinctness while doing this.

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ



Gentry-Wichs Barrier

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain 
adaptive soundness.

• Issue: It is not clear that one can maintain succinctness while doing this.

• Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain 
succinctness.

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ



Gentry-Wichs Barrier

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain 
adaptive soundness.

• Issue: It is not clear that one can maintain succinctness while doing this.

• Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain 
succinctness.

• No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to 
Feb 2024*).

*Feb 2024: [WW24], [MPV24], [WZ24]

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ



Our work



Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.



Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.

• Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can 
be made adaptively sound in the designated verifier setting with no 
additional assumptions.



Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.

• Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can 
be made adaptively sound in the designated verifier setting with no 
additional assumptions.

• Corollary: Adaptively sound dv-zkSNARKs for UP from either



Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.

• Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can 
be made adaptively sound in the designated verifier setting with no 
additional assumptions.

• Corollary: Adaptively sound dv-zkSNARKs for UP from either

• LWE and evasive LWE



Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.

• Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can 
be made adaptively sound in the designated verifier setting with no 
additional assumptions.

• Corollary: Adaptively sound dv-zkSNARKs for UP from either

• LWE and evasive LWE

• LWE, subexponentially-secure iO, subexponentially-secure OWF



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP Adaptive dvSNARK for UP

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARK for UP



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UPSNARG to SNARK 
Transformation

“Sahai-Waters”-like SNARGs



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UPSNARG to SNARK 
Transformation

“Sahai-Waters”-like SNARGs



Concurrent works



Concurrent works

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure 
publicly verifiable SNARGs for NP.



Concurrent works

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure 
publicly verifiable SNARGs for NP.

• [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.



Concurrent works

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure 
publicly verifiable SNARGs for NP.

• [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.

• [WZ24] Sub-exponential iO + OWF, LWE.



Concurrent works

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure 
publicly verifiable SNARGs for NP.

• [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.

• [WZ24] Sub-exponential iO + OWF, LWE.

• Corollary: Publicly verifiable SNARKs for UP using our/[CGKS23] compiler.



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

Adaptive SNARG for NP 
from iO + X [WW24, WZ24]

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

Adaptive SNARG for NP 
from iO + X [WW24, WZ24]

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

Adaptive SNARG for NP 
from iO + X [WW24, WZ24]

SNARG to SNARK 
Transformation

SNARG to SNARK 
Transformation



dvSNARG for UP from 
evasive LWE

SNARG for NP from iO 
[SW14]

Adaptive dvSNARG for UP 
from evasive LWE

Adaptive dvSNARG for NP 
from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

Adaptive SNARG for NP 
from iO + X [WW24, WZ24] Adaptive SNARK for UP

SNARG to SNARK 
Transformation

SNARG to SNARK 
Transformation



TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!



Witness PRF [Zhandry 16]



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

• Security:  If ,  where  is a random string.x ∉ L (𝗉𝗄, F𝗌𝗄(x)) ≈c (𝗉𝗄, r) r



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

• Security:  If ,  where  is a random string.x ∉ L (𝗉𝗄, F𝗌𝗄(x)) ≈c (𝗉𝗄, r) r

Hybrid between witness encryption 
and constrained PRFs



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

• Security:  If ,  where  is a random string.x ∉ L (𝗉𝗄, F𝗌𝗄(x)) ≈c (𝗉𝗄, r) r



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

• Security:  If ,  where  is a random string.x ∉ L (𝗉𝗄, F𝗌𝗄(x)) ≈c (𝗉𝗄, r) r

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.



Witness PRF [Zhandry 16]
• We view the “Sahai-Waters” SNARG in the designated verifier setting as a 

special case of witness PRF.

• Fix an NP relation . Witness PRF is a triple of algorithms .R (𝖦𝖾𝗇, 𝖤𝗏𝖺𝗅, F)

• . (𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

• Correctness: If , . R(x, w) = 1 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

• Security:  If ,  where  is a random string.x ∉ L (𝗉𝗄, F𝗌𝗄(x)) ≈c (𝗉𝗄, r) r

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.
Our UP SNARG: Adaptive witness PRF for UP from evasive LWE.



Sahai-Waters Witness PRF

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

• Secret key: PRF Key .k

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

• Secret key: PRF Key .k

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿

• Correctness: If  then 
obfuscation outputs .

R(x, w) = 1,
𝖯𝖱𝖥k(x)



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

• Secret key: PRF Key .k

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿

• Correctness: If  then 
obfuscation outputs .

R(x, w) = 1,
𝖯𝖱𝖥k(x)

• Non-adaptive security: If , 
replace  in obfuscation with 
punctured key .

x* ∉ L
k

k{x*}



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

• Secret key: PRF Key .k

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿

• Correctness: If  then 
obfuscation outputs .

R(x, w) = 1,
𝖯𝖱𝖥k(x)

• Non-adaptive security: If , 
replace  in obfuscation with 
punctured key .

x* ∉ L
k

k{x*}



Sahai-Waters Witness PRF

• Public key: Let  be a puncturable 
PRF. Key is the obfuscation of this: 
 
 
 
 

𝖯𝖱𝖥

• Secret key: PRF Key .k

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

   
- If , output 
- Else, output 

𝖯𝗋𝗈𝗏𝖾k(x, w) :
R(x, w) = 1 𝖯𝖱𝖥k(x)

⊥

:𝖨𝗇𝖽𝖮𝖻𝖿

• Correctness: If  then 
obfuscation outputs .

R(x, w) = 1,
𝖯𝖱𝖥k(x)

• Non-adaptive security: If , 
replace  in obfuscation with 
punctured key .

x* ∉ L
k

k{x*}

(𝗉𝗄, 𝖯𝖱𝖥k(x)) ≈c (𝗉𝗄′ , r)



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱 = 𝖼𝗋𝗌 𝗉𝗄



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w)



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)



Witness PRF to SNARG Template

Witness PRF for  

• . 


• Correctness: If , 
. 


• Security:  If ,  hides the 
value of , i.e.  looks 
random.

R

(𝗉𝗄, 𝗌𝗄) ← 𝗐𝖯𝖱𝖥 . 𝖦𝖾𝗇(𝖱)

R(x, w) = 1
𝖤𝗏𝖺𝗅𝗉𝗄(x, w) = F𝗌𝗄(x)

x ∉ L 𝗉𝗄
F𝗌𝗄(x) F𝗌𝗄(x)

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)

Claim: For , 
.


Moreover, this transformation 
preserves adaptiveness.

x* ∉ L
(𝖼𝗋𝗌, F𝗌𝗄(x*)) ≈c (𝖼𝗋𝗌, r)



Complexity Leveraging the Witness PRF 



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝒞Non-adaptive 
Challenger



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝒜Non-adaptive 
Adversary 𝒞Non-adaptive 

Challenger



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*
𝗉𝗄

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*

x′ 

𝗉𝗄

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*

x′ 

𝗉𝗄

If , you get 
an advantage, else, 

flip a coin

x′ = x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*

x′ 

𝗉𝗄

yb
If , you get 
an advantage, else, 

flip a coin

x′ = x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Complexity Leveraging the Witness PRF 

• We argued that the resulting SNARG is adaptively sound if the witness PRF is 
adaptively sound.

• Take a non-adaptive witness PRF construction with  security.2−(|x|+λ)

• Complexity leverage the witness PRF to obtain an adaptive witness PRF which is 
polynomially secure!

𝗉𝗄, yb

x*

x′ 

𝗉𝗄

yb
If , you get 
an advantage, else, 

flip a coin

x′ = x*

𝒜′ 

Adaptive 
Adversary 𝒜Non-adaptive 

Adversary 𝒞Non-adaptive 
Challenger

Advantage: Adv(𝒜′ )/2|x|

Choose random 
x* ∉ L

y0 = F𝗌𝗄(x*), y1 = r



Witness PRF to SNARG Template

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)

Claim: For , 
.


Moreover, this transformation 
preserves adaptiveness.

x* ∉ L
(𝖼𝗋𝗌, F𝗌𝗄(x*)) ≈c (𝖼𝗋𝗌, r)



Witness PRF to SNARG Template

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)

Claim: For , 
.


Moreover, this transformation 
preserves adaptiveness.

x* ∉ L
(𝖼𝗋𝗌, F𝗌𝗄(x*)) ≈c (𝖼𝗋𝗌, r)

• The length of  is depends only on 
security parameter of the SNARG! 

π



Witness PRF to SNARG Template

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)

Claim: For , 
.


Moreover, this transformation 
preserves adaptiveness.

x* ∉ L
(𝖼𝗋𝗌, F𝗌𝗄(x*)) ≈c (𝖼𝗋𝗌, r)

• The length of  is depends only on 
security parameter of the SNARG! 

π

• Can decouple the wPRF security 
indistinguishability parameter 
from proof search size. 



Witness PRF to SNARG Template

𝒫 𝒱

State = 𝗌𝗄

 = 𝖼𝗋𝗌 𝗉𝗄

π = 𝖤𝗏𝖺𝗅𝗉𝗄(x, w) x, π
Accept if π = F𝗌𝗄(x)

Claim: For , 
.


Moreover, this transformation 
preserves adaptiveness.

x* ∉ L
(𝖼𝗋𝗌, F𝗌𝗄(x*)) ≈c (𝖼𝗋𝗌, r)

• The length of  is depends only on 
security parameter of the SNARG! 

π

• Can decouple the wPRF security 
indistinguishability parameter 
from proof search size. 

• We can choose proof size  for 
 soundness!

∼ λ
2−λ



TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!



TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Build a witness PRF for UP from 
evasive LWE



Witness PRF from Evasive LWE



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2

WK1,K2
(x, w) = {

FK1
(x) if R(x, w) = 1

GK2
(x, w) otherwise



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2

WK1,K2
(x, w) = {

FK1
(x) if R(x, w) = 1

GK2
(x, w) otherwise

This is a PRF if  is a  relation. If not , then this might not hold! R 𝖴𝖯 𝖴𝖯



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2

WK1,K2
(x, w) = {

FK1
(x) if R(x, w) = 1

GK2
(x, w) otherwise

This is a PRF if  is a  relation. If not , then this might not hold! R 𝖴𝖯 𝖴𝖯

• If  has two witness , then  (i.e. zeroizing regime!)x w1, w2 WK1,K2
(x, w1) = WK1,K2

(x, w2)



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2

WK1,K2
(x, w) = {

FK1
(x) if R(x, w) = 1

GK2
(x, w) otherwise

This is a PRF if  is a  relation. If not , then this might not hold! R 𝖴𝖯 𝖴𝖯

• If  has two witness , then  (i.e. zeroizing regime!)x w1, w2 WK1,K2
(x, w1) = WK1,K2

(x, w2)

• Step 3: Construct wPRF: . The obfuscation guarantee, for :𝗉𝗄 = 𝒪(W), 𝗌𝗄 = K1 x* ∉ L



Witness PRF from Evasive LWE
• Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from 

evasive LWE.

• Step 2: Consider the following function constructed from PRFs  and .FK1
GK2

WK1,K2
(x, w) = {

FK1
(x) if R(x, w) = 1

GK2
(x, w) otherwise

This is a PRF if  is a  relation. If not , then this might not hold! R 𝖴𝖯 𝖴𝖯

• If  has two witness , then  (i.e. zeroizing regime!)x w1, w2 WK1,K2
(x, w1) = WK1,K2

(x, w2)

• Step 3: Construct wPRF: . The obfuscation guarantee, for :𝗉𝗄 = 𝒪(W), 𝗌𝗄 = K1 x* ∉ L

(𝗉𝗄, FK1
(x*)) ≈c (𝗉𝗄, r)



Summary



Summary
• We build adaptively sound designated-verifier SNARGs for:



Summary
• We build adaptively sound designated-verifier SNARGs for:

•  from LWE and evasive LWE𝖴𝖯



Summary
• We build adaptively sound designated-verifier SNARGs for:

•  from LWE and evasive LWE𝖴𝖯

•  from sub-exponential iO + OWF𝖭𝖯



Summary
• We build adaptively sound designated-verifier SNARGs for:

•  from LWE and evasive LWE𝖴𝖯

•  from sub-exponential iO + OWF𝖭𝖯

• We show that adaptively sound SNARGs for  can be transformed into 
SNARKs for  assuming polynomially secure LWE. 

𝖴𝖯
𝖴𝖯



Summary
• We build adaptively sound designated-verifier SNARGs for:

•  from LWE and evasive LWE𝖴𝖯

•  from sub-exponential iO + OWF𝖭𝖯

• We show that adaptively sound SNARGs for  can be transformed into 
SNARKs for  assuming polynomially secure LWE. 

𝖴𝖯
𝖴𝖯

• We can build SNARKs from falsifiable assumptions! 



Open Questions



Open Questions
• Can we construct witness PRFs directly from LWE?



Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?



Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?

• What else can we prove from evasive LWE that we can build from 
obfuscation?



Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?

• What else can we prove from evasive LWE that we can build from 
obfuscation?

• Can we transform our SNARG into a publicly verifiable SNARG? 



Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?

• What else can we prove from evasive LWE that we can build from 
obfuscation?

• Can we transform our SNARG into a publicly verifiable SNARG? 

• Have to be very careful about zeroizing attacks!



Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?

• What else can we prove from evasive LWE that we can build from 
obfuscation?

• Can we transform our SNARG into a publicly verifiable SNARG? 

• Have to be very careful about zeroizing attacks!

• Can we get a SNARG with a smaller CRS? Can we get a common random/
transparent string?



Thank you very much for 
your attention!



Bonus Slides



-PRF Obfuscationσ



-PRF Obfuscationσ
• Consider a matrix branching program given by 

. Then, suppose that:P = {u, {Mi,b}i∈[k],b∈{0,1}, v}



-PRF Obfuscationσ
• Consider a matrix branching program given by 

. Then, suppose that:P = {u, {Mi,b}i∈[k],b∈{0,1}, v}

 {u (∏Mi,xi) v}
x∈{0,1}k

, 𝖺𝗎𝗑 ≈c {𝒰}x∈{0,1}k, 𝖺𝗎𝗑



-PRF Obfuscationσ
• Consider a matrix branching program given by 

. Then, suppose that:P = {u, {Mi,b}i∈[k],b∈{0,1}, v}

 {u (∏Mi,xi) v}
x∈{0,1}k

, 𝖺𝗎𝗑 ≈c {𝒰}x∈{0,1}k, 𝖺𝗎𝗑

(i.e. the function is a “very secure PRF” 
when noise is added) 



-PRF Obfuscationσ
• Consider a matrix branching program given by 

. Then, suppose that:P = {u, {Mi,b}i∈[k],b∈{0,1}, v}

 {u (∏Mi,xi) v}
x∈{0,1}k

, 𝖺𝗎𝗑 ≈c {𝒰}x∈{0,1}k, 𝖺𝗎𝗑

• Then, our obfuscation guarantees that .(𝒪(P), 𝖺𝗎𝗑) ≈c (𝒟, 𝖺𝗎𝗑)

(i.e. the function is a “very secure PRF” 
when noise is added) 



-PRF Obfuscationσ
• Consider a matrix branching program given by 

. Then, suppose that:P = {u, {Mi,b}i∈[k],b∈{0,1}, v}

 {u (∏Mi,xi) v}
x∈{0,1}k

, 𝖺𝗎𝗑 ≈c {𝒰}x∈{0,1}k, 𝖺𝗎𝗑

• Then, our obfuscation guarantees that .(𝒪(P), 𝖺𝗎𝗑) ≈c (𝒟, 𝖺𝗎𝗑)

(i.e. the function is a “very secure PRF” 
when noise is added) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 



Simplified Obfuscation Construction



Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v



Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v

Fk(x) = u (
h

∏
i=1

Mi,xi) v



Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v

Fk(x) = u (
h

∏
i=1

Mi,xi) v

Take the subset product! 



Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v

Fk(x) = u (
h

∏
i=1

Mi,xi) v

Take the subset product! 

Note: There are no read-
once PRFs, but we assume 

this for simplicity.



Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v

Fk(x) = u (
h

∏
i=1

Mi,xi) v

• Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching 
program.

Take the subset product! 

Note: There are no read-
once PRFs, but we assume 

this for simplicity.



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

• Sample  (i.e. 
small entries)

Si,b ← χc×c



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

• Sample  (i.e. 
small entries)

Si,b ← χc×c



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

Taking subset product still gives:

u (
3

∏
i=1

Mi,xi) v = Fk(x)



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2
A2

A2 A−1
2

A−1
2



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2
A2

A2 A−1
2

A−1
2



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 

A2

A2 A−1
2

A−1
2



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =

A2

A2 A−1
2

A−1
2



S

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2

All  evaluations22 = 4

A2

A2 A−1
2

A−1
2



S

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

All  evaluations22 = 4

A2

A2 A−1
2

A−1
2



PS

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

All  evaluations22 = 4

Two matrices

A2

A2 A−1
2

A−1
2



PS

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

Then: 

All  evaluations22 = 4

Two matrices

A2

A2 A−1
2

A−1
2



PS

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

Then: 

All  evaluations22 = 4

Two matrices

A2

A2 A−1
2

A−1
2



PS

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

Then: 

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰

All  evaluations22 = 4

Two matrices

A2

A2 A−1
2

A−1
2



PS

GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

• Sample  with a 
trapdoor

A2

Set 
S =
B = A2
P =

Then: 

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Because  is a PRFFk

All  evaluations22 = 4

Two matrices

A2

A2 A−1
2

A−1
2



GGH15 Encodings
• Sample  (i.e. 

small entries)

• Sample  with a trapdoor


Set 









Then: 




Because  is a PRF

Si,b ← χc×c

A2

S =
B = A2
P =

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Fk

P

Two matrices

M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

A2

A2 A−1
2

A−1
2

All  evaluations22 = 4



GGH15 Encodings
• Sample  (i.e. 

small entries)

• Sample  with a trapdoor


Set 









Then: 




Because  is a PRF

Si,b ← χc×c

A2

S =
B = A2
P =

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Fk

P

Two matrices

M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

A2

A2 A−1
2

A−1
2

All possible evaluated products are of the form: 
SB = {uM1,x1

M2,x2
A2 + 1S1,x1

S2,x2
A2}x1,x2∈{0,1}

All  evaluations22 = 4



GGH15 Encodings
• Sample  (i.e. 

small entries)

• Sample  with a trapdoor


Set 









Then: 




Because  is a PRF

Si,b ← χc×c

A2

S =
B = A2
P =

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Fk

P

Two matrices

M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

A2

A2 A−1
2

A−1
2

All possible evaluated products are of the form: 
SB = {uM1,x1

M2,x2
A2 + 1S1,x1

S2,x2
A2}x1,x2∈{0,1}

pseudorandom (with noise) by LWE!

All  evaluations22 = 4



GGH15 Encodings
• Sample  (i.e. 

small entries)

• Sample  with a trapdoor


Set 









Then: 




Because  is a PRF

Si,b ← χc×c

A2

S =
B = A2
P =

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Fk

P

Two matrices

M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

A2

A2 A−1
2

A−1
2

All possible evaluated products are of the form: 
SB = {uM1,x1

M2,x2
A2 + 1S1,x1

S2,x2
A2}x1,x2∈{0,1}

pseudorandom (with noise) by LWE!
SB, SP ≈c 𝒰, 𝒰 ⇒ SB, B−1(P) ≈c 𝒰, B−1(P)

All  evaluations22 = 4



GGH15 Encodings
• Sample  (i.e. 

small entries)

• Sample  with a trapdoor


Set 









Then: 




Because  is a PRF

Si,b ← χc×c

A2

S =
B = A2
P =

SP = {Fk(x)}x∈{0,1}3 ≈ 𝒰
Fk

P

Two matrices

M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

A2

A2 A−1
2

A−1
2

All possible evaluated products are of the form: 
SB = {uM1,x1

M2,x2
A2 + 1S1,x1

S2,x2
A2}x1,x2∈{0,1}

pseudorandom (with noise) by LWE!
SB, SP ≈c 𝒰, 𝒰 ⇒ SB, B−1(P) ≈c 𝒰, B−1(P)

All  evaluations22 = 4

Pseudorandom by evasive LWE!



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

A2

A2

A−1
2

A−1
2

( )

( )

(u | |1)

(u | |1)

(v
0)

(v
0)

• Repeatedly apply evasive LWE!

• Shrunk the size from  evaluated products to size to  matrices.2h 2h



GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

A2

A2

A−1
2

A−1
2

( )

( )

(

(

A1

A1

A−1
1

A−1
1

)

)

( )

( )

(u | |1)

(u | |1)

(v
0)

(v
0)

• Repeatedly apply evasive LWE!

• Shrunk the size from  evaluated products to size to  matrices.2h 2h


