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Our Results
Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Many new constructions due to evasive LWE, previously only known from obfuscation:
• Optimal Broadcast Encryption and CP-ABE [Wee22]
• Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
• Multi-Authority ABE [WWW22]
• ABE for unbounded depth circuits [HLL23]

ObfuscationLWE
Evasive 
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Big Picture:
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Examples of languages:

•  where  is an injective function𝖨𝗆𝖥 = {x |∃y s.t. F(y) = x} F

• 𝖥𝖺𝖼𝗍𝗈𝗋 = {N | ∃ primes p ≤ q s.t. N = pq}

• 𝖣𝖣𝖧 = {(g, a, b, c) |∃x, y  s.t. a = gx, b = gy, c = gxy}
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• Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the 
so-called “zeroizing regime”. Evasive LWE seems to avoid this.
• Idea: Collect many equations on low-norm secrets over low-norm 

constants. Solve over integers!
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• Extreme example: Suppose . Then, given  and , 

one can compute the product: 
SP = 0 SB + E B−1(P)

(SB + E) ⋅ B−1(P) = SP + E ⋅ B−1(P) = E ⋅ B−1(P)

• Now, we can solve for  over integers, because everything on RHS has 
low-norm. 

E

• With  in the clear, no more LWE guarantees on !E SB + E

• Similar attack works for  with correlated rows.SP

• Evasive LWE: This is the only attack! Doesn’t work if  were uniform.SP
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• Follows techniques of [GGH15] and generalises [VWW22]. 

• Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

• Use this obfuscation to instantiate a “Sahai-Waters”-like SNARG. More details later!

(i.e. the function is a “very secure PRF”) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 
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TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!



SNARGs vs. SNARKs



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍
x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍
x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i
Repeat  

times
𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

• SNARKs “compose better” than SNARGs with 
cryptographic objects

𝒫 𝖤𝗑𝗍

πi

𝖼𝗋𝗌i

Output  such that w
R(x, w) = 1

Repeat  
times

𝗉𝗈𝗅𝗒

x

Knowledge soundness: , if  can 
create accepting proofs for  with 

 probability,  outputs a .

∃𝖤𝗑𝗍 𝒫
x

1/𝗉𝗈𝗅𝗒(n) 𝖤𝗑𝗍𝒫(x) w

Rewind

*Note that this definition is non-adaptive. This is the 
best one can hope for from falsifiable assumptions.



SNARGs vs. SNARKs
• Succinct Non-Interactive Argument of Knowledge

• One can extract a witness from accepting 
proofs, i.e. the prover must “know” the 
witness.

• Recall: Regular SNARG definition has no 
soundness guarantees if a prover does not 
know a witness for .x ∈ L

• SNARKs “compose better” than SNARGs with 
cryptographic objects

• E.g. Somewhere extractable BARGs
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Qn: Can we build SNARKs for  from falsifiable assumptions?𝖴𝖯
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SNARG to SNARK for UP
Theorem 2: Assuming polynomial hardness of LWE, an adaptively 

sound SNARG for UP can be used to construct an adaptively 
sound SNARK for UP, while preserving zero-knowledge.

• Our transformation follows [CGKS23] who show a similar transformation from 
SNARG for NP to SNARK for UP.

• We also correct some issues in their work: 

• Their transformation (as is) is not zero-knowledge and requires adaptive 
SNARGs for NP.
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x*, π*

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱 x* ∉ L

Common Reference 
String ( )𝖼𝗋𝗌

𝒫* 𝒱

π*

(Informal) Gentry-Wichs Barrier: If a language takes time  to “decide”, there is no  
for  black-box reduction to falsifiable assumptions that shows adaptive soundness.

2nδ 2nϵ

ϵ < δ

Adaptive Soundness Non-Adaptive Soundness

Intuition: How can you tell if 
soundness was broken? Need to 

decide if x* ∈ L!
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• An assumption is falsifiable if there exists an efficient challenger  that can 

decide if an adversary  “won” the game. 
𝒞

𝒜

• An assumption usually is associated with a parameter  s.t. the 
assumption is considered “broken” if .

c ∈ [0,1]
Pr[𝒜 wins] ≥ c + 𝗇𝖾𝗀𝗅(λ)

𝒜 𝒞

Outputs win 

or lose

• E.g. Decision problems like DDH 
and LWE have parameter  


• E.g. Search problems like OWF, 
DLOG have parameter 

c = 1/2

c = 0
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(Non-)Examples of Falsifiable Assumptions

• Eg 1: Decisional LWE: . (A, As + e) ≈c (A, b)

• “Eg” 2: For all , .C1 ≡ C2 i𝒪(C1) ≈c i𝒪(C2)

𝒜 𝒞
C1, C2

i𝒪(Cb)

b′￼ Accept if b = b′￼

and C1 ≡ C2

Takes up to  
time to check

2|x|
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Gentry-Wichs Barrier

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain 
adaptive soundness.

• Issue: It is not clear that one can maintain succinctness while doing this.

• Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain 
succinctness.

• No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to 
Feb 2024*).

*Feb 2024: [WW24], [MPV24], [WZ24]
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Our work
• Theorem 3. We show that our dvSNARG for UP is adaptively sound.

• Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can 
be made adaptively sound in the designated verifier setting with no 
additional assumptions.

• Corollary: Adaptively sound dv-zkSNARKs for UP from either

• LWE and evasive LWE

• LWE, subexponentially-secure iO, subexponentially-secure OWF
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Concurrent works

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure 
publicly verifiable SNARGs for NP.

• [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.

• [WZ24] Sub-exponential iO + OWF, LWE.

• Corollary: Publicly verifiable SNARKs for UP using our/[CGKS23] compiler.
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TL;DR
In this work, we


1. Build a designated-verifier SNARG for UP from LWE and evasive LWE


2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound. 


• Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!


3. Transformation from SNARG for UP to SNARK for UP.


• Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. 

All of the above constructions/transformations also satisfy/preserve zero-knowledge!
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• We can build SNARKs from falsifiable assumptions! 
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Open Questions
• Can we construct witness PRFs directly from LWE?

• Can we prove evasive LWE from LWE?

• What else can we prove from evasive LWE that we can build from 
obfuscation?

• Can we transform our SNARG into a publicly verifiable SNARG? 

• Have to be very careful about zeroizing attacks!

• Can we get a SNARG with a smaller CRS? Can we get a common random/
transparent string?



Thank you very much for 
your attention!
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 {u (∏Mi,xi) v}
x∈{0,1}k

, 𝖺𝗎𝗑 ≈c {𝒰}x∈{0,1}k, 𝖺𝗎𝗑

• Then, our obfuscation guarantees that .(𝒪(P), 𝖺𝗎𝗑) ≈c (𝒟, 𝖺𝗎𝗑)

(i.e. the function is a “very secure PRF” 
when noise is added) 

(i.e. the obfuscation leaks nothing more 
than the outputs) 
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Simplified Obfuscation Construction

• Step 1: Consider a read-once branching program PRF  given 
by  satisfying:

Fk : {0,1}h → 𝒴
u, {Mi,b}i∈[h],b∈{0,1}, v

Fk(x) = u (
h

∏
i=1

Mi,xi) v

• Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching 
program.

Take the subset product! 

Note: There are no read-
once PRFs, but we assume 

this for simplicity.
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GGH15 Encodings
M1,0

M1,1

M2,0

M2,1

M3,0

M3,1

S1,0

S1,1

S2,0

S2,1

S3,0

S3,1

(u | |1)

(u | |1)

(v
0)

(v
0)

• Sample  (i.e. 
small entries)

Si,b ← χc×c

Taking subset product still gives:

u (
3

∏
i=1

Mi,xi) v = Fk(x)
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Because  is a PRF

Si,b ← χc×c
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S =
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P =
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All possible evaluated products are of the form: 
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A2 + 1S1,x1
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pseudorandom (with noise) by LWE!
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All  evaluations22 = 4

Pseudorandom by evasive LWE!
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• Shrunk the size from  evaluated products to size to  matrices.2h 2h
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