Adaptively Sound Zero-Knowledge SNARKs for UP

Surya Mathialagan MIT

Spencer Peters
Cornell University

Vinod Vaikuntanathan
MIT

TL;DR

TL;DR

In this work, we

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Succinct Non-interactive ARGument

Fix NP language L
\mathscr{P}

\mathscr{V}

Instance x, witness w

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)
\mathscr{P}

Instance x, witness w

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)
\mathscr{P}

Instance x, witness w
$\pi=\mathscr{P}(\mathrm{crs}, x, w)$

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)
\mathscr{P}

Instance x, witness w
$\pi=\mathscr{P}(\mathrm{crs}, x, w)$
\qquad

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

- Completeness: If $R(x, w)=1$, then $\mathscr{V}(\operatorname{crs}, \mathscr{P}(\operatorname{crs}, x, w))=1$.

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

- Completeness: If $R(x, w)=1$, then $\mathscr{V}(\operatorname{crs}, \mathscr{P}(\operatorname{crs}, x, w))=1$.
- Soundness: For all ppt \mathscr{P}^{*}, hard to come up with cheating proof for $x^{*} \notin L$:

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

Instance x, witness w $\pi=\mathscr{P}(\mathrm{crs}, x, w)$

- Completeness: If $R(x, w)=1$, then $\mathscr{V}(\operatorname{crs}, \mathscr{P}(\operatorname{crs}, x, w))=1$.
- Soundness: For all ppt \mathscr{P}^{*}, hard to come up with cheating proof for $x^{*} \notin L$:

Succinct Non-interactive ARGument

Fix NP language L
Common Reference String (crs)

Instance x, witness w $\pi=\mathscr{P}(\mathrm{crs}, x, w)$

Succinct:
 $$
|\pi| \ll|w|
$$

x, π

$$
\mathscr{V}(\operatorname{crs}, x, \pi)
$$

- Completeness: If $R(x, w)=1$, then $\mathscr{V}(\operatorname{crs}, \mathscr{P}(\operatorname{crs}, x, w))=1$.
- Soundness: For all ppt \mathscr{P}^{*}, hard to come up with cheating proof for $x^{*} \notin L$:

$$
\underset{\mathrm{crs}}{\operatorname{Pr}}\left[\left(x^{*}, \pi^{*}\right) \leftarrow \mathscr{P} *(\mathrm{crs}) \wedge x^{*} \notin L \wedge \mathscr{V}\left(\operatorname{crs}, x^{*}, \pi^{*}\right)=1\right] \leq \operatorname{neg} \mid(\lambda)
$$

Designated-Verifier SNARG

Common Reference String (crs)
\mathscr{P}

$$
\pi=\mathscr{P}(\operatorname{crs}, x, w)
$$

Designated-Verifier SNARG

Designated-Verifier SNARG

Designated-Verifier SNARG

Reusable soundness:
Soundness holds even when
$\mathscr{P} *$ has black-box access to \mathscr{V}

Designated-Verifier SNARG

Reusable soundness:
Soundness holds even when
$\mathscr{P} *$ has black-box access to \mathscr{V}

Designated-Verifier SNARG

Reusable soundness:
Soundness holds even when
$\mathscr{P} *$ has black-box access to \mathscr{V}

Designated-Verifier SNARG

Designated-Verifier SNARG

State of SNARGs

State of SNARGs

ROM/Knowledge
Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

State of SNARGs

ROM/Knowledge NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
Assumptions many many more!

Obfuscation
NP [SW14], [JJ22], [WW24], [WZ24]

State of SNARGs

State of SNARGs

State of SNARGs

State of SNARGs

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE
Obfuscation

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE

Obfuscation

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE

Obfuscation

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE

Obfuscation

Many new constructions due to evasive LWE, previously only known from obfuscation:

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
LWE

Obfuscation

Many new constructions due to evasive LWE, previously only known from obfuscation:

- Optimal Broadcast Encryption and CP-ABE [Wee22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE

Obfuscation

Many new constructions due to evasive LWE, previously only known from obfuscation:

- Optimal Broadcast Encryption and CP-ABE [Wee22]
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE

Obfuscation

Many new constructions due to evasive LWE, previously only known from obfuscation:

- Optimal Broadcast Encryption and CP-ABE [Wee22]
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
- Multi-Authority ABE [WWW22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE

Obfuscation

Many new constructions due to evasive LWE, previously only known from obfuscation:

- Optimal Broadcast Encryption and CP-ABE [Wee22]
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
- Multi-Authority ABE [WWW22]
- ABE for unbounded depth circuits [HLL23]

UP (or "Unique" P)

UP (or "Unique" P)

- UP $=\mathrm{NP}$ language which has a relation R such that if $x \in L$, there exists exactly one witness w such that $R(x, w)=1$.

UP (or "Unique" P)

- UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that $R(x, w)=1$.

Examples of languages:

UP (or "Unique" P)

- UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that $R(x, w)=1$.

Examples of languages:

- $\operatorname{ImF}=\{x \mid \exists y$ s.t. $F(y)=x\}$ where F is an injective function

UP (or "Unique" P)

- UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that $R(x, w)=1$.

Examples of languages:

- $\operatorname{ImF}=\{x \mid \exists y$ s.t. $F(y)=x\}$ where F is an injective function
- Factor $=\{N \mid \exists$ primes $p \leq q$ s.t. $N=p q\}$

UP (or "Unique" P)

- UP $=\mathrm{NP}$ language which has a relation R such that if $x \in L$, there exists exactly one witness w such that $R(x, w)=1$.

Examples of languages:

- $\operatorname{ImF}=\{x \mid \exists y$ s.t. $F(y)=x\}$ where F is an injective function
- Factor $=\{N \mid \exists$ primes $p \leq q$ s.t. $N=p q\}$
- $\mathrm{DDH}=\left\{(g, a, b, c) \mid \exists x, y\right.$ s.t. $\left.a=g^{x}, b=g^{y}, c=g^{x y}\right\}$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

$$
\text { if } \quad(\underbrace{\mathbf{S B}}, \underline{\mathbf{S P}}) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

if
 $(\underline{\mathbf{S B}}, \mathbf{S P}) \approx_{r}(\mathscr{U}$.
 Throughout this talk, squiggly lines indicate noise

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

$$
\text { if } \quad(\underbrace{\mathbf{S B}}, \underline{\mathbf{S P}}) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

$$
\begin{array}{cc}
\text { if } & \left(\mathbf{m B}^{\mathbf{S B}}, \mathbf{m}^{\mathbf{S P}}\right) \approx_{c}(\mathscr{U}, \mathscr{U}) \\
\text { then } & \left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)
\end{array}
$$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

$$
\text { if } \quad(\underbrace{\mathbf{S B}}, \underline{\mathbf{S P}}) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

$\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that
$\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{P}$
then $\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

$$
\text { if } \quad\left(\mathbf{S B}^{\mathbf{S B}}, \mathbf{P P}^{\mathbf{S P}}\right) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

$\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that
$\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{P}$
then $\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)$

Intuition: Given $\mathbf{S B}$ and $\mathbf{B}^{-\mathbf{1}}(\mathbf{P})$, can compute $\mathbf{S B} \cdot \mathbf{B}^{\mathbf{1}}(\mathbf{P}) \approx \mathbf{S P}$, and not much else.

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P}.

$$
\text { if } \quad(\underbrace{\mathbf{S B}}, \underline{\mathbf{S P}}) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

$\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that
$\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{P}$
then $\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)$

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P}.

$$
\text { if } \quad\left(\mathbf{S B}^{\mathbf{S B}}, \underline{\mathbf{S P}}\right) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

$\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian pre-
image sample such that
$\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{P}$
then $\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)$

- Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the so-called "zeroizing regime". Evasive LWE seems to avoid this.

Tool: Evasive LWE

Proposed by Wee (Eurocrypt '22).
Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P}.

$$
\text { if } \quad\left(\mathbf{S B}^{\mathbf{S B}}, \underline{\mathbf{S P}}\right) \approx_{c}(\mathscr{U}, \mathscr{U})
$$

$\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that
$\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{P}$
then $\quad\left(\mathbf{S B}, \mathbf{B}^{-1}(\mathbf{P})\right) \approx_{c}\left(\mathscr{U}, \mathbf{B}^{-1}(\mathbf{P})\right)$

- Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the so-called "zeroizing regime". Evasive LWE seems to avoid this.
- Idea: Collect many equations on low-norm secrets over low-norm constants. Solve over integers!

Zeroizing attacks

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

- Now, we can solve for \mathbf{E} over integers, because everything on RHS has low-norm.

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

- Now, we can solve for \mathbf{E} over integers, because everything on RHS has low-norm.
- With \mathbf{E} in the clear, no more LWE guarantees on $\mathbf{S B}+\mathbf{E}$!

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

- Now, we can solve for \mathbf{E} over integers, because everything on RHS has low-norm.
- With \mathbf{E} in the clear, no more LWE guarantees on $\mathbf{S B}+\mathbf{E}$!
- Similar attack works for $\mathbf{~ S P}$ with correlated rows.

Zeroizing attacks

- Extreme example: Suppose $\mathbf{S P}=\mathbf{0}$. Then, given $\mathbf{S B}+\mathbf{E}$ and $\mathbf{B}^{-1}(\mathbf{P})$, one can compute the product:

$$
(\mathbf{S B}+\mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{S P}+\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})=\mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})
$$

- Now, we can solve for \mathbf{E} over integers, because everything on RHS has low-norm.
- With \mathbf{E} in the clear, no more LWE guarantees on $\mathbf{S B}+\mathbf{E}$!
- Similar attack works for $\mathbf{S P}$ with correlated rows.
- Evasive LWE: This is the only attack! Doesn't work if $\mathbf{S P}_{\mathbf{P}}^{\mathbf{P}}$ were uniform.

Main Tool

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$
\text { if } \quad\left(\left\{F_{k}(x)\right\}_{x}, \text { aux }\right) \approx(\mathscr{U}, \mathrm{aux})
$$

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$
\text { if } \quad\left(\left\{F_{k}(x)\right\}_{x}, \mathrm{aux}\right) \approx(\mathscr{U}, \mathrm{aux}) \quad \text { (i.e. the function is a "very secure PRF") }
$$

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$
\begin{aligned}
& \text { if } \quad(\underbrace{\left\{F_{k}(x)\right.}\}_{x}, \mathrm{aux}) \approx(\mathscr{U}, \mathrm{aux}) \quad \text { (i.e. the function is a "very secure PRF") } \\
& \text { then } \quad\left(\mathscr{O}\left(F_{k}\right), \mathrm{aux}\right) \approx(\mathscr{D}, \mathrm{aux})
\end{aligned}
$$

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$
\begin{array}{cc}
\text { if } \quad(\underbrace{}_{k} F_{k}(x)\}_{x}, \mathrm{aux}) & \approx(\mathscr{U}, \mathrm{aux}) \\
\text { then } \quad\left(\mathcal{O}\left(F_{k}\right), \mathrm{aux}\right) \approx(\mathscr{D}, \mathrm{aux}) & \text { (i.e. the obfuscation leaks nothing more is a "very secure PRF") } \\
\text { than the outputs) }
\end{array}
$$

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$
\begin{array}{cl}
\text { if } \quad(\underbrace{}_{k} F_{k}(x)\}_{x}, \mathrm{aux}) & \approx(\mathscr{U}, \mathrm{aux}) \\
\text { then } \quad\left(\mathcal{O}\left(F_{k}\right), \mathrm{aux}\right) \approx(\mathscr{D}, \mathrm{aux}) & \begin{array}{c}
\text { (i.e. the obfuscation leaks nothing more } \\
\text { than the outputs) }
\end{array}
\end{array}
$$

- Follows techniques of [GGH15] and generalises [VWW22].

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

- Follows techniques of [GGH15] and generalises [VWW22].
- Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

Main Tool

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\left\{F_{k}\right\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

- Follows techniques of [GGH15] and generalises [VWW22].
- Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc
- Use this obfuscation to instantiate a "Sahai-Waters"-like SNARG. More details later!

TL;DR

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

SNARGs vs. SNARKs

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive $\underline{\text { Argument }}$ of Knowledge

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge \mathscr{O}
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge \mathscr{P}

Ext

- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge \mathscr{P}

Ext

- One can extract a witness from accepting \qquad proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge

Ext

- One can extract a witness from accepting proofs, i.e. the prover must "know" the
\qquad \longrightarrow witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

Ext

 \xrightarrow{x} $\longrightarrow$$\mathrm{Crs}_{i}$

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

\downarrow

SNARGs vs. SNARKs

- $\underline{\text { Succinct }}$ Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

Output w such that $R(x, w)=1$

SNARGs vs. SNARKs

- Succinct $^{\mathbf{N}}$ on-Interactive Argument of $\underline{\text { Knowledge }}$
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

Knowledge soundness: \exists Ext, if \mathscr{P} can
create accepting proofs for x with
1/poly (n) probability, Ext ${ }^{\mathscr{P}(x)}$ outputs a w.

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.

$\mathscr{P} \quad$ Ext
 x \longrightarrow

Repeat poly times

\square
Output w such that $R(x, w)=1$

Knowledge soundness: \exists Ext, if \mathscr{P} can
create accepting proofs for x with
1/poly (n) probability, Ext ${ }^{\mathscr{P}(x)}$ outputs a w.
*Note that this definition is non-adaptive. This is the best one can hope for from falsifiable assumptions.

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.
- Recall: Regular SNARG definition has no soundness guarantees if a prover does not know a witness for $x \in L$.

*Note that this definition is non-adaptive. This is the best one can hope for from falsifiable assumptions.

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.
- Recall: Regular SNARG definition has no soundness guarantees if a prover does not know a witness for $x \in L$.
- SNARKs "compose better" than SNARGs with cryptographic objects

\mathscr{P}
 Ext
 \qquad

Knowledge soundness: \exists Ext, if \mathscr{P} can create accepting proofs for x with 1/poly(n) probability, Ext ${ }^{\mathscr{P}(x)}$ outputs a w.
*Note that this definition is non-adaptive. This is the best one can hope for from falsifiable assumptions.

SNARGs vs. SNARKs

- Succinct Non-Interactive Argument of Knowledge
- One can extract a witness from accepting proofs, i.e. the prover must "know" the witness.
- Recall: Regular SNARG definition has no soundness guarantees if a prover does not know a witness for $x \in L$.
- SNARKs "compose better" than SNARGs with cryptographic objects
- E.g. Somewhere extractable BARGs

Knowledge soundness: $\exists \mathrm{Ext}$, if \mathscr{P} can create accepting proofs for x with 1/poly(n) probability, Ext ${ }^{\mathscr{P}(x)}$ outputs a w.
*Note that this definition is non-adaptive. This is the best one can hope for from falsifiable assumptions.

Barrier to SNARKs for NP

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of

Ext

 NP from falsifiable assumptions! [CGKS23]- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.

- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Rewind $\$$

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Rewind $\$$

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!
- Hard to piece together a single witness! Can be formalised in terms of leakage resilience.

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!
- Hard to piece together a single witness! Can be formalised in terms of leakage resilience.
- Impossibility doesn’t hold for UP!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
- Each proof is a "small leakage" on a witness.
- The prover might use a different witness each time!
- Hard to piece together a single witness! Can be formalised in terms of leakage resilience.
- Impossibility doesn’t hold for UP!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of

NP from falsifiable assumptions! [CGKS23]

- Each proof is a "small leakage" on a witness.
\qquad

Qn: Can we build SNARKs for UP from falsifiable assumptions?

- Hard to piece together a single witness! Can be formalised in terms of leakage resilience.

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

- Our transformation follows [CGKS23] who show a similar transformation from SNARG for NP to SNARK for UP.

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

- Our transformation follows [CGKS23] who show a similar transformation from SNARG for NP to SNARK for UP.
- We also correct some issues in their work:

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

- Our transformation follows [CGKS23] who show a similar transformation from SNARG for NP to SNARK for UP.
- We also correct some issues in their work:
- Their transformation (as is) is not zero-knowledge and requires adaptive SNARGs for NP.

Adaptive vs. Non-Adaptive Soundness

Adaptive vs. Non-Adaptive Soundness

Adaptive vs. Non-Adaptive Soundness

Adaptive vs. Non-Adaptive Soundness

Adaptive vs. Non-Adaptive Soundness

Adaptive vs. Non-Adaptive Soundness

	Adaptive Soundness		Non-Adaptive Soundness		
OX*		7	O*	$x^{*} \notin L$	7
	Common Reference String (crs)			Common Reference String (crs)	
	x^{*}, π^{*}			π^{*}	

Adaptive vs. Non-Adaptive Soundness

Non-Adaptive Soundness

Common Reference String (crs)
\qquad
(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

Adaptive vs. Non-Adaptive Soundness

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

Falsifiable Assumptions

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in[0,1]$ s.t. the assumption is considered "broken" if $\operatorname{Pr}[\mathscr{A}$ wins $] \geq c+\operatorname{neg}(\lambda)$.

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in[0,1]$ s.t. the assumption is considered "broken" if $\operatorname{Pr}[\mathscr{A}$ wins $] \geq c+\operatorname{neg}(\lambda)$.

$$
\mathscr{C}
$$

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in[0,1]$ s.t. the assumption is considered "broken" if $\operatorname{Pr}[\mathscr{A}$ wins $] \geq c+\operatorname{neg}(\lambda)$.

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in[0,1]$ s.t. the assumption is considered "broken" if $\operatorname{Pr}[\mathscr{A}$ wins $] \geq c+\operatorname{neg}(\lambda)$.

Falsifiable Assumptions

- An assumption is falsifiable if there exists an efficient challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in[0,1]$ s.t. the assumption is considered "broken" if $\operatorname{Pr}[\mathscr{A}$ wins $] \geq c+\operatorname{neg}(\lambda)$.

- E.g. Decision problems like DDH and LWE have parameter $c=1 / 2$
- E.g. Search problems like OWF, DLOG have parameter $c=0$
(Non-)Examples of Falsifiable Assumptions

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

(Non-)Examples of Falsifiable Assumptions

- Eg 1: Decisional LWE: $(\mathbf{A}, \mathbf{A s}+\mathbf{e}) \approx_{c}(\mathbf{A}, \mathbf{b})$.
- "Eg" 2: For all $C_{1} \equiv C_{2}, i \mathcal{O}\left(C_{1}\right) \approx_{c} i \mathcal{O}\left(C_{2}\right)$.

Adaptive dvSNARK for UP

```
Adaptive dvSNARG for UP
``` \(\qquad\)
``` Adaptive dvSNARK for UP
```

SNARG to SNARK
Transformation
dvSNARG for UP from evasive LWE

SNARG to SNARK
SNARG for NP from iO [SW14]

Transformation

Gentry-Wichs Barrier

SNARGs from
Falsifiable
Assumptions

Gentry-Wichs Barrier

Gentry-Wichs Barrier

Gentry-Wichs Barrier

Gentry-Wichs Barrier

Gentry-Wichs Barrier

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{e}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{e}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- Issue: It is not clear that one can maintain succinctness while doing this.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{e}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- Issue: It is not clear that one can maintain succinctness while doing this.
- Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain succinctness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon<\delta$ black-box reduction to falsifiable assumptions that shows adaptive soundness.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- Issue: It is not clear that one can maintain succinctness while doing this.
- Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain succinctness.
- No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to Feb 2024*).

Our work

Our work

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.

Our work

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.
- Theorem 4. Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made adaptively sound in the designated verifier setting with no additional assumptions.

Our work

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.
- Theorem 4. Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made adaptively sound in the designated verifier setting with no additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either

Our work

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.
- Theorem 4. Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made adaptively sound in the designated verifier setting with no additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either
- LWE and evasive LWE

Our work

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.
- Theorem 4. Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made adaptively sound in the designated verifier setting with no additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either
- LWE and evasive LWE
- LWE, subexponentially-secure iO, subexponentially-secure OWF
dvSNARG for UP from evasive LWE

SNARG to SNARK
SNARG for NP from iO [SW14]

Transformation
dvSNARG for UP from evasive LWE

SNARG for NP from iO [SW14]
"Sahai-Waters"-like SNARGs
dvSNARG for UP from evasive LWE

SNARG for NP from iO [SW14]

Adaptive dvSNARK for UP
"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

Concurrent works

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
- [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
- [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.
- [WZ24] Sub-exponential iO + OWF, LWE.

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
- [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.
- [WZ24] Sub-exponential iO + OWF, LWE.
- Corollary: Publicly verifiable SNARKs for UP using our/[CGKS23] compiler.
"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

Adaptive SNARG for NP from iO + X [WW24, WZ24]
"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

"Sahai-Waters"-like SNARGs

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Witness PRF [Zhandry 16]

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L,\left(\mathrm{pk}, F_{\mathrm{sk}}(x)\right) \approx_{c}(\mathrm{pk}, r)$ where r is a random string.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is Hybrid between witness encryption F). and constrained PRFs
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF}$. Gen (R).
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L,\left(\mathrm{pk}, F_{\mathrm{sk}}(x)\right) \approx_{c}(\mathrm{pk}, r)$ where r is a random string.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L,\left(\mathrm{pk}, F_{\mathrm{sk}}(x)\right) \approx_{c}(\mathrm{pk}, r)$ where r is a random string.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L,\left(\mathrm{pk}, F_{\mathrm{sk}}(x)\right) \approx_{c}(\mathrm{pk}, r)$ where r is a random string.

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.

Witness PRF [Zhandry 16]

- We view the "Sahai-Waters" SNARG in the designated verifier setting as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1, \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L,\left(\mathrm{pk}, F_{\mathrm{sk}}(x)\right) \approx_{c}(\mathrm{pk}, r)$ where r is a random string.

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.
Our UP SNARG: Adaptive witness PRF for UP from evasive LWE.

Sahai-Waters Witness PRF

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
6 IndObf:
    \(\operatorname{Prove}_{k}(x, w)\)
    - If \(R(x, w)=1\), output \(\operatorname{PRF}_{k}(x)\)
    - Else, output \(\perp\)
```


Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
8 \text { IndObf:}
Prove
    - If }R(x,w)=1, output PRF F (x
    - Else, output \perp
```

- Secret key: PRF Key k.

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
8 IndObf:
Prove}
    - If }R(x,w)=1, output PRF F (x
    - Else, output \perp
```

- Secret key: PRF Key k.
- Correctness: If $R(x, w)=1$, then obfuscation outputs $\mathrm{PRF}_{k}(x)$.

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
8 IndObf:
Prove}
    - If }R(x,w)=1, output PRF F (x
    - Else, output \perp
```

- Correctness: If $R(x, w)=1$, then obfuscation outputs $\operatorname{PRF}_{k}(x)$.
- Non-adaptive security: If $x^{*} \notin L$, replace k in obfuscation with punctured key $k\left\{x^{*}\right\}$.
- Secret key: PRF Key k.

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
8 IndObf:
Prove}
    - If }R(x,w)=1, output PRF F (x
    - Else, output \perp
```

- Correctness: If $R(x, w)=1$, then obfuscation outputs $\operatorname{PRF}_{k}(x)$.
- Non-adaptive security: If $x^{*} \notin L$, replace k in obfuscation with punctured key $k\left\{x^{*}\right\}$.
- Secret key: PRF Key k.

Sahai-Waters Witness PRF

- Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

```
8 IndObf:
Prove}
    - If }R(x,w)=1, output PRF F (x
    - Else, output \perp
```

- Secret key: PRF Key k.
- Correctness: If $R(x, w)=1$, then obfuscation outputs $\operatorname{PRF}_{k}(x)$.
- Non-adaptive security: If $x^{*} \notin L$, replace k in obfuscation with punctured key $k\left\{x^{*}\right\}$.

$$
\left(\mathrm{pk}^{2} \operatorname{PRF}_{k}(x)\right) \approx_{c}\left(\mathrm{pk}^{\prime}, r\right)
$$

Witness PRF to SNARG Template

Witness PRF for R

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1$, $\operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x)$.
- Security: If $x \notin L, \mathrm{pk}$ hides the value of $F_{\text {sk }}(x)$, i.e. $F_{\text {sk }}(x)$ looks random.

Witness PRF to SNARG Template

\mathscr{P}

\mathscr{V}

Witness PRF for R

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1$, $\operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\mathrm{sk}}(x)$.
- Security: If $x \notin L, \mathrm{pk}$ hides the value of $F_{\text {sk }}(x)$, i.e. $F_{\text {sk }}(x)$ looks random.

Witness PRF to SNARG Template

\mathscr{P} $\mathrm{crs}=\mathrm{pk}$

Witness PRF for R

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1$, $\operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x)$.
- Security: If $x \notin L, \mathrm{pk}$ hides the value of $F_{\text {sk }}(x)$, i.e. $F_{\text {sk }}(x)$ looks random.

Witness PRF to SNARG Template

\mathscr{P}

$$
\mathrm{crs}=\mathrm{pk}
$$

Witness PRF for R

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1$, $\operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x)$.
- Security: If $x \notin L, \mathrm{pk}$ hides the value of $F_{\text {sk }}(x)$, i.e. $F_{\text {sk }}(x)$ looks random.

Witness PRF to SNARG Template

$$
\begin{aligned}
& \mathscr{P} \quad \mathrm{crs}=\mathrm{pk} \quad \mathscr{V} \\
& \text { State }=s k I \\
& \pi=\operatorname{Eval}_{\mathrm{pk}}(x, w) \\
& \text { Witness PRF for } R \\
& \text { - }(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R}) \text {. } \\
& \text { - Correctness: If } R(x, w)=1 \text {, } \\
& \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x) \text {. } \\
& \text { - Security: If } x \notin L, \mathrm{pk} \text { hides the } \\
& \text { value of } F_{\text {sk }}(x) \text {, i.e. } F_{\text {sk }}(x) \text { looks } \\
& \text { random. }
\end{aligned}
$$

Witness PRF to SNARG Template

$$
\begin{aligned}
& \mathscr{P} \llbracket \mathrm{css}=\mathrm{pk} \quad \mathscr{V} \\
& \text { State }=\mathrm{sk} \text { I } \\
& \pi=\operatorname{Eval}_{\mathrm{pk}}(x, w) \xrightarrow{x, \pi} \\
& \text { Witness PRF for } R \\
& \text { - }(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R}) \text {. } \\
& \text { - Correctness: If } R(x, w)=1 \text {, } \\
& \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x) \text {. } \\
& \text { - Security: If } x \notin L, \mathrm{pk} \text { hides the } \\
& \text { value of } F_{\text {sk }}(x) \text {, i.e. } F_{\text {sk }}(x) \text { looks } \\
& \text { random. }
\end{aligned}
$$

Witness PRF to SNARG Template

$$
\begin{array}{c|c}
\mathscr{O} & \mathscr{D} \\
& \text { crs }=\mathrm{pk} \\
\text { State }=\mathrm{sk} \text { ! } \\
\pi=\operatorname{Eval}_{\mathrm{pk}}(x, w) \xrightarrow{x, \pi} & \text { Accept if } \pi=F_{\mathrm{sk}}(x)
\end{array}
$$

Witness PRF for R

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R})$.
- Correctness: If $R(x, w)=1$, $\operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x)$.
- Security: If $x \notin L, \mathrm{pk}$ hides the value of $F_{\text {sk }}(x)$, i.e. $F_{\text {sk }}(x)$ looks random.

Witness PRF to SNARG Template

$$
\begin{aligned}
& \mathscr{P} \quad \text { crs }=\mathrm{pk} \quad \mathscr{V} \\
& \text { State }=s k I \\
& \pi=\mathrm{Eval}_{\mathrm{pk}}(x, w) \xrightarrow{x, \pi} \text { Accept if } \pi=F_{\mathrm{sk}}(x) \\
& \text { Witness PRF for } R \\
& \text { - }(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{wPRF} . \operatorname{Gen}(\mathrm{R}) \text {. } \\
& \text { - Correctness: If } R(x, w)=1 \text {, } \\
& \operatorname{Eval}_{\mathrm{pk}}(x, w)=F_{\text {sk }}(x) \text {. } \\
& \text { - Security: If } x \notin L, \mathrm{pk} \text { hides the } \\
& \text { value of } F_{\text {sk }}(x) \text {, i.e. } F_{\text {sk }}(x) \text { looks } \\
& \text { random. }
\end{aligned}
$$

Witness PRF to SNARG Template

Complexity Leveraging the Witness PRF

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Non-adaptive Challenger

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Non-adaptive Challenger

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Choose random

$$
x^{*} \notin L
$$

Non-adaptive Challenger

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Choose random

$$
x^{*} \notin L
$$

Non-adaptive Challenger

x^{*}

$$
y_{0}=F_{\mathrm{sk}}\left(x^{*}\right), y_{1}=r
$$

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Choose random

$$
x^{*} \notin L
$$

Non-adaptive Challenger

$\xrightarrow[\mathrm{pk}, y_{b}]{x^{*}} y_{0}=F_{\mathrm{sk}}\left(x^{*}\right), y_{1}=r$

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Choose random

$$
x^{*} \notin L
$$

Non-adaptive Challenger

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Complexity Leveraging the Witness PRF

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Witness PRF to SNARG Template

$$
\mathscr{P} \quad \mathrm{css}=\mathrm{pk} \quad \mathscr{V}
$$

$$
\begin{gathered}
\text { State }=\text { sk } 9 \\
\pi=\operatorname{Eval}_{\mathrm{pk}}(x, w) \xrightarrow{x, \pi} \quad \text { Accept if } \pi=F_{\mathrm{sk}}(x)
\end{gathered}
$$

Claim: For $x^{*} \notin L$, $\left(\mathrm{crs}, F_{\mathrm{sk}}\left(x^{*}\right)\right) \approx_{c}(\mathrm{crs}, r)$.
Moreover, this transformation
preserves adaptiveness.

Witness PRF to SNARG Template

$$
\mathscr{P} \quad \text { crs = pk } \quad \mathscr{V}
$$

$$
\begin{gathered}
\text { State }=\text { sk } 9 \\
\pi=\mathrm{Eval}_{\mathrm{pk}}(x, w) \xrightarrow{x, \pi} \text { Accept if } \pi=F_{\mathrm{sk}}(x)
\end{gathered}
$$

- The length of π is depends only on security parameter of the SNARG!

Claim: For $x^{*} \notin L$, $\left(\mathrm{crs}, F_{\mathrm{sk}}\left(x^{*}\right)\right) \approx_{c}(\mathrm{crs}, r)$.
Moreover, this transformation preserves adaptiveness.

Witness PRF to SNARG Template

$$
\begin{gathered}
\text { State }=\text { sk } I \\
\pi=\operatorname{Eval}_{\mathrm{pk}}(x, w) \longrightarrow \text { Accept if } \pi=F_{\mathrm{sk}}(x)
\end{gathered}
$$

- The length of π is depends only on security parameter of the SNARG!
- Can decouple the wPRF security indistinguishability parameter from proof search size.

Witness PRF to SNARG Template

> - The length of π is depends only on security parameter of the SNARG!
> - Can decouple the wPRF security indistinguishability parameter from proof search size.
> - We can choose proof size $\sim \lambda$ for $2^{-\lambda}$ soundness!

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

TL;DR

In this work, we
Build a witness PRF for UP from evasive LWE

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

- Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Witness PRF from Evasive LWE

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

$$
W_{K_{1}, K_{2}}(x, w)= \begin{cases}F_{K_{1}}(x) & \text { if } R(x, w)=1 \\ G_{K_{2}}(x, w) & \text { otherwise }\end{cases}
$$

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

$$
W_{K_{1}, K_{2}}(x, w)= \begin{cases}F_{K_{1}}(x) & \text { if } R(x, w)=1 \\ G_{K_{2}}(x, w) & \text { otherwise }\end{cases}
$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

$$
W_{K_{1}, K_{2}}(x, w)= \begin{cases}F_{K_{1}}(x) & \text { if } R(x, w)=1 \\ G_{K_{2}}(x, w) & \text { otherwise }\end{cases}
$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w_{1}, w_{2}, then $W_{K_{1}, K_{2}}\left(x, w_{1}\right)=W_{K_{1}, K_{2}}\left(x, w_{2}\right)$ (i.e. zeroizing regime!)

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

$$
W_{K_{1}, K_{2}}(x, w)= \begin{cases}F_{K_{1}}(x) & \text { if } R(x, w)=1 \\ G_{K_{2}}(x, w) & \text { otherwise }\end{cases}
$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w_{1}, w_{2}, then $W_{K_{1}, K_{2}}\left(x, w_{1}\right)=W_{K_{1}, K_{2}}\left(x, w_{2}\right)$ (i.e. zeroizing regime!)
- Step 3: Construct wPRF: $\mathrm{pk}=\mathcal{O}(W), \mathrm{sk}=K_{1}$. The obfuscation guarantee, for $x^{*} \notin L$:

Witness PRF from Evasive LWE

- Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from evasive LWE.
- Step 2: Consider the following function constructed from PRFs $F_{K_{1}}$ and $G_{K_{2}}$.

$$
W_{K_{1}, K_{2}}(x, w)= \begin{cases}F_{K_{1}}(x) & \text { if } R(x, w)=1 \\ G_{K_{2}}(x, w) & \text { otherwise }\end{cases}
$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w_{1}, w_{2}, then $W_{K_{1}, K_{2}}\left(x, w_{1}\right)=W_{K_{1}, K_{2}}\left(x, w_{2}\right)$ (i.e. zeroizing regime!)
- Step 3: Construct wPRF: $\mathrm{pk}=\mathcal{O}(W), \mathrm{sk}=K_{1}$. The obfuscation guarantee, for $x^{*} \notin L$:

$$
\left(\mathrm{pk}, F_{K_{1}}\left(x^{*}\right)\right) \approx_{c}(\mathrm{pk}, r)
$$

Summary

Summary

- We build adaptively sound designated-verifier SNARGs for:

Summary

- We build adaptively sound designated-verifier SNARGs for:
- UP from LWE and evasive LWE

Summary

- We build adaptively sound designated-verifier SNARGs for:
- UP from LWE and evasive LWE
- NP from sub-exponential iO + OWF

Summary

- We build adaptively sound designated-verifier SNARGs for:
- UP from LWE and evasive LWE
- NP from sub-exponential iO + OWF
- We show that adaptively sound SNARGs for UP can be transformed into SNARKs for UP assuming polynomially secure LWE.

Summary

- We build adaptively sound designated-verifier SNARGs for:
- UP from LWE and evasive LWE
- NP from sub-exponential iO + OWF
- We show that adaptively sound SNARGs for UP can be transformed into SNARKs for UP assuming polynomially secure LWE.
- We can build SNARKs from falsifiable assumptions!

Open Questions

Open Questions

- Can we construct witness PRFs directly from LWE?

Open Questions

- Can we construct witness PRFs directly from LWE?
- Can we prove evasive LWE from LWE?

Open Questions

- Can we construct witness PRFs directly from LWE?
- Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?

Open Questions

- Can we construct witness PRFs directly from LWE?
- Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?

Open Questions

- Can we construct witness PRFs directly from LWE?
- Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?
- Have to be very careful about zeroizing attacks!

Open Questions

- Can we construct witness PRFs directly from LWE?
- Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?
- Have to be very careful about zeroizing attacks!
- Can we get a SNARG with a smaller CRS? Can we get a common random/ transparent string?

Thank you very much for your attention!

Bonus Slides

σ-PRF Obfuscation

σ-PRF Obfuscation

- Consider a matrix branching program given by $\mathbf{P}=\left\{\mathbf{u},\left\{\mathbf{M}_{i, b}\right\}_{i \in[k], b \in\{0,1\}}, \mathbf{v}\right\}$. Then, suppose that:

σ-PRF Obfuscation

- Consider a matrix branching program given by $\mathbf{P}=\left\{\mathbf{u},\left\{\mathbf{M}_{i, b}\right\}_{i \in[k], b \in\{0,1\}}, \mathbf{v}\right\}$. Then, suppose that:

$$
\left\{\mathbf{u}\left(\prod \mathbf{M}_{i, x_{i}}\right) \mathbf{v}\right\}_{x \in\{0,1\}^{k}}, \text { aux } \approx_{c}\{\mathscr{U}\}_{x \in\{0,1\}^{k}} \text {, aux }
$$

σ-PRF Obfuscation

- Consider a matrix branching program given by $\mathbf{P}=\left\{\mathbf{u},\left\{\mathbf{M}_{i, b}\right\}_{i \in[k], b \in\{0,1\}}, \mathbf{v}\right\}$. Then, suppose that:
(i.e. the function is a "very secure PRF" when noise is added)

σ-PRF Obfuscation

- Consider a matrix branching program given by $\mathbf{P}=\left\{\mathbf{u},\left\{\mathbf{M}_{i, b}\right\}_{i \in[k], b \in\{0,1\}}, \mathbf{v}\right\}$. Then, suppose that:

$$
\left\{\mathbf{u}^{\left.\mathbf{u}\left(\prod \mathbf{M}_{i, x_{i}}\right) \mathbf{v}\right\}_{x \in\{0,1\}^{k}}, \text { aux } \approx_{c}\{\mathscr{U}\}_{x \in\{0,1\}^{k}}, \text { aux }}\right.
$$

(i.e. the function is a "very secure PRF" when noise is added)

- Then, our obfuscation guarantees that $(\mathcal{O}(P)$, aux $) \approx_{c}(\mathscr{D}, \mathrm{aux})$.

σ-PRF Obfuscation

- Consider a matrix branching program given by $\mathbf{P}=\left\{\mathbf{u},\left\{\mathbf{M}_{i, b}\right\}_{i \in[k], b \in\{0,1\}}, \mathbf{v}\right\}$. Then, suppose that:

$$
\left\{\mathbf{u}\left(\prod \mathbf{M}_{i, x_{i}}\right) \mathbf{v}\right\}_{x \in\{0,1\}^{k}}, \text { aux } \approx_{c}\{\mathscr{U}\}_{x \in\{0,1\}^{k}}, \text { aux }
$$

(i.e. the function is a "very secure PRF" when noise is added)

- Then, our obfuscation guarantees that $(\mathcal{O}(P)$, aux $) \approx_{c}(\mathscr{D}$, aux $)$.

Simplified Obfuscation Construction

Simplified Obfuscation Construction

- Step 1: Consider a read-once branching program PRF $F_{k}:\{0,1\}^{h} \rightarrow \mathscr{Y}$ given byu, $\left\{M_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{v}$ satisfying:

Simplified Obfuscation Construction

- Step 1: Consider a read-once branching program PRF $F_{k}:\{0,1\}^{h} \rightarrow \mathscr{Y}$ given byu, $\left\{M_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{v}$ satisfying:

$$
F_{k}(\mathbf{x})=\mathbf{u}\left(\prod_{i=1}^{h} \mathbf{M}_{i, x_{i}}\right) \mathbf{v}
$$

Simplified Obfuscation Construction

- Step 1: Consider a read-once branching program PRF $F_{k}:\{0,1\}^{h} \rightarrow \mathscr{Y}$ given byu, $\left\{M_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{v}$ satisfying:

Take the subset product!

$$
F_{k}(\mathbf{x})=\mathbf{u}\left(\prod_{i=1}^{h} \mathbf{M}_{i, x_{i}}\right) \mathbf{v}
$$

Simplified Obfuscation Construction

- Step 1: Consider a read-once branching program PRF $F_{k}:\{0,1\}^{h} \rightarrow \mathscr{Y}$ given byu, $\left\{M_{i, b}\right\}_{i \in[h], b \in\{0,1\}}$, v satisfying:

Take the subset product!

Note: There are no readonce PRFs, but we assume this for simplicity.

$$
F_{k}(\mathbf{x})=\mathbf{u}\left(\prod_{i=1}^{h} \mathbf{M}_{i, x_{i}}\right) \mathbf{v}
$$

Simplified Obfuscation Construction

- Step 1: Consider a read-once branching program PRF $F_{k}:\{0,1\}^{h} \rightarrow \mathscr{Y}$ given byu, $\left\{M_{i, b}\right\}_{i \in[h], b \in\{0,1\}}, \mathbf{v}$ satisfying:

Note: There are no readonce PRFs, but we assume this for simplicity.

$$
F_{k}(\mathbf{x})=\mathbf{u}\left(\prod_{i=1}^{h} \mathbf{M}_{i, x_{i}}\right) \mathbf{v}
$$

- Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching program.

GGH15 Encodings

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)

Taking subset product still gives:

$$
\mathbf{u}\left(\prod_{i=1}^{3} M_{i, x_{i}}\right) \mathbf{v}=F_{k}(\mathbf{x})
$$

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e.
 small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e.
 small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$ All $2^{2}=4$ evaluations
$\mathbf{B}=\mathbf{A}_{2}$
$\mathbf{P}=$ Two matrices
Then:
$\mathbf{S P}=\left\{F_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{3}} \approx \mathscr{U}$
Because F_{k} is a PRF

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$ All $2^{2}=4$ evaluations
$\mathbf{B}=\mathbf{A}_{2}$
$\mathbf{P}=$ Two matrices
Then:
$\mathbf{S P}=\left\{F_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{3}} \approx \mathscr{U}$
Because F_{k} is a PRF
$\mathbf{S B}=\left\{\mathbf{u} M_{1, x_{1}} M_{2, x_{2}} \overline{\mathbf{A}_{2}}+\mathbf{1} S_{1, x_{1}} S_{2, x_{2}} \underline{\mathbf{A}_{2}}\right\}_{x_{1}, x_{2} \in\{0,1\}}$

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$ All $2^{2}=4$ evaluations
$\mathbf{B}=\mathbf{A}_{2}$
$\mathbf{P}=$ Two matrices
Then:
$\mathbf{S P}=\left\{F_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{3}} \approx \mathscr{U}$
Because F_{k} is a PRF

pseudorandom (with noise) by LWE!

GGH15 Encodings

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$ All $2^{2}=4$ evaluations
$\mathbf{B}=\mathbf{A}_{2}$
$\mathbf{P}=$ Two matrices
Then:
$\mathbf{S P}=\left\{F_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{3}} \approx \mathscr{U}$
Because F_{k} is a PRF

pseudorandom (with noise) by LWE!
$\mathbf{S B}, \mathbf{S P} \approx_{c} \mathscr{U}, \mathscr{U} \Rightarrow \mathbf{S B}, \mathbf{B}^{\mathbf{- 1}}(\mathbf{P}) \approx_{c} \mathscr{U}, \mathbf{B}^{\mathbf{- 1}}(\mathbf{P})$

nGH15 Encodings

Pseudorandom by evasive LWE!
$\left(\mathbf{u}|\mid \mathbf{1}) \begin{array}{|l|l|}\hline M_{1,0} & \\ \hline & S_{1,0} \\ \hline\end{array}\right.$

$M_{2,0}$	
	$S_{2,0}$

(u||1)

All possible evaluated products are of the form:
 pseudorandom (with noise) by LWE!

- Sample $S_{i, b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample \mathbf{A}_{2} with a trapdoor

Set
$\mathbf{S}=$ All $2^{2}=4$ evaluations
$\mathbf{B}=\mathbf{A}_{2}$
$\mathbf{P}=$ Two matrices
Then:
$\mathbf{S P}=\left\{F_{k}(\mathbf{x})\right\}_{\mathbf{x} \in\{0,1\}^{3}} \approx \mathscr{U}$
Because F_{k} is a PRF

GGH15 Encodings

- Repeatedly apply evasive LWE!
- Shrunk the size from 2^{h} evaluated products to size to $2 h$ matrices.

GGH15 Encodings

- Repeatedly apply evasive LWE!
- Shrunk the size from 2^{h} evaluated products to size to $2 h$ matrices.

