Adaptively Sound Zero-Knowledge SNARKs for UP

Surya Mathialagan MIT

Spencer Peters Cornell University

Vinod Vaikuntanathan MIT

1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE

1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE

2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- 1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE
- 2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.
 - Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

- 1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE
- 2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.
 - Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
- 3. Transformation from **SNAR**<u>G</u> for UP to **SNAR**<u>K</u> for UP.

- 1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE
- 2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.
 - Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
- 3. Transformation from **SNARG for UP** to **SNARK** for **UP**.
 - Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions. lacksquare

- 1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE
- 2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.
 - Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
- 3. Transformation from **SNARG for UP** to **SNARK** for **UP**.
 - Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Fix NP language L

Instance *x*, witness *w*

Fix NP language L

Common Reference String (crs)

Instance *x*, witness *w*

Fix NP language L

Common Reference String (crs)

Instance *x*, witness *w* $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Fix NP language L

Common Reference String (crs)

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

 X, π

Fix NP language L

Common Reference String (crs)

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Fix NP language L

Common Reference String (crs)

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

 $\mathcal{V}(\operatorname{crs}, x, \pi)$

Fix NP language L

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

• Completeness: If R(x, w) = 1, then $\mathcal{V}(crs, \mathcal{P}(crs, x, w)) = 1$.

Fix NP language L

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

- Completeness: If R(x, w) = 1, then $\mathcal{V}(crs, \mathcal{P}(crs, x, w)) = 1$.

• Soundness: For all ppt \mathscr{P}^* , hard to come up with cheating proof for $x^* \notin L$:

Fix NP language L

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

- Completeness: If R(x, w) = 1, then $\mathcal{V}(crs, \mathcal{P}(crs, x, w)) = 1$.

• Soundness: For all ppt \mathscr{P}^* , hard to come up with cheating proof for $x^* \notin L$:

Fix NP language L

Instance *x*, witness *w*

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

- Completeness: If R(x, w) = 1, then $\mathcal{V}(crs, \mathcal{P}(crs, x, w)) = 1$.

crs

• Soundness: For all ppt \mathscr{P}^* , hard to come up with cheating proof for $x^* \notin L$:

 $\Pr[(x^*, \pi^*) \leftarrow \mathscr{P}^*(\operatorname{crs}) \land x^* \notin L \land \mathscr{V}(\operatorname{crs}, x^*, \pi^*) = 1] \le \operatorname{negl}(\lambda)$

Common Reference String (crs)

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

 X, π

Common Reference String (crs) \mathscr{V} \mathscr{V} \mathscr{X}, π Secret verifier \mathfrak{S}
state (sk)

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Common Reference String (crs) \mathscr{V} x, π Secret verifier \mathfrak{S}
state (sk) $\mathscr{V}(\mathsf{sk}, x, \pi)$

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Reusable soundness:

Soundness holds even when \mathscr{P}^* has black-box access to \mathscr{V}

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Reusable soundness:

Soundness holds even when \mathscr{P}^* has black-box access to \mathscr{V}

Common Reference String (crs) 7/ Secret verifier **9** X, π state (sk) $\mathcal{V}(\mathbf{sk}, x, \pi)$ Accept/Reject

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Reusable soundness: Soundness holds even when

 \mathscr{P}^* has black-box access to \mathscr{V}

Common Reference String (crs) 7/ Secret verifier **9** X, π state (sk) $\mathcal{V}(\mathbf{sk}, x, \pi)$ Accept/Reject x_{2}, π_{2}

 $\pi = \mathscr{P}(\operatorname{crs}, x, w)$

Accept/Reject

Reusable soundness: Soundness holds even when \mathscr{P}^* has black-box access to \mathscr{V}

Common Reference String (crs) 7/ Secret verifier **9** X, π state (sk) $\mathcal{V}(\mathbf{sk}, x, \pi)$ Accept/Reject x_{2}, π_{2} Accept/Reject **Reusable soundness:** Soundness holds even when X_{2}, π_{2}

Accept/Reject

 \mathscr{P}^* has black-box access to \mathscr{V}

ROM/Knowledge Assumptions

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

ROM/Knowledge Assumptions	NP [Micali94], [Groth10],
Obfuscation	NP [\$

[DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

SW14], [JJ22], [WW24], [WZ24]

ROM/Knowledge Assumptions	NP [Micali94], [Groth10],
Obfuscation	NP [S
LWE/Other Polynomially Falsifiable Assumptions	Batch-NP [CJJ21, WW Monotone-Policy Batch

[DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

SW14], [JJ22], [WW24], [WZ24]

V22], **P** [KRR14, KPY19, CJJ21], **NTISP** [KVZ22], **h-NP** [BBKLP23], Some of **NP** ∩ **CoNP** [JKLV24], many more!

ROM/Knowledge Assumptions	NP [Micali94], [Groth10],
Obfuscation	NP [S
LWE/Other Polynomially Falsifiable Assumptions	Batch-NP [CJJ21, WW Monotone-Policy Batch

[DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

SW14], [JJ22], [WW24], [WZ24]

V22], **P** [KRR14, KPY19, CJJ21], **NTISP** [KVZ22], **h-NP** [BBKLP23], Some of **NP** ∩ **CoNP** [JKLV24], many more! NP!

ROM/Knowledge Assumptions	NP [Micali94], [Groth10],
Obfuscation	NP [S
LWE/Other Polynomially Falsifiable Assumptions	Batch-NP [CJJ21, WW Monotone-Policy Batch

[DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

SW14], [JJ22], [WW24], [WZ24]

V22], **P** [KRR14, KPY19, CJJ21], **NTISP** [KVZ22], **h-NP** [BBKLP23], Some of **NP** ∩ **CoNP** [JKLV24], many more! NP!

NP!

ROM/Knowledge Assumptions	NP [Micali94], [Groth10],
Obfuscation	NP [S
LWE/Other Polynomially Falsifiable Assumptions	Batch-NP [CJJ21, WW Monotone-Policy Batch

[DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and many many more!

SW14], [JJ22], [WW24], [WZ24]

V22], **P** [KRR14, KPY19, CJJ21], **NTISP** [KVZ22], **h-NP** [BBKLP23], Some of **NP** ∩ **CoNP** [JKLV24], many more!

NP!

NP!

Not yet at NP, even in dv setting

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

Our Results
Big Picture:

Our Results

Obfuscation

Big Picture:

LWE

Our Results

Obfuscation

Big Picture:

LWE

Our Results

Obfuscation

Our Results

Optimal Broadcast Encryption and CP-ABE [Wee22] •

Our Results

- Optimal Broadcast Encryption and CP-ABE [Wee22] \bullet
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]

Our Results

- Optimal Broadcast Encryption and CP-ABE [Wee22] \bullet
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
- Multi-Authority ABE [WWW22]

Our Results

- Optimal Broadcast Encryption and CP-ABE [Wee22]
- Witness Encryption [Tsabary22, VWW22], Null-iO [VWW22]
- Multi-Authority ABE [WWW22]
- ABE for unbounded depth circuits [HLL23]

Our Results

exactly one witness w such that R(x, w) = 1.

• UP = NP language which has a relation R such that if $x \in L$, there exists

• UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that R(x, w) = 1.

Examples of languages:

• UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that R(x, w) = 1.

Examples of languages: • $ImF = \{x \mid \exists y \text{ s.t. } F(y) = x\}$ where *F* is an injective function

• UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that R(x, w) = 1.

Examples of languages:

- Factor = { $N \mid \exists$ primes $p \leq q$ s.t. N = pq}

• ImF = { $x \mid \exists y \text{ s.t. } F(y) = x$ } where F is an injective function

• UP = NP language which has a relation R such that if $x \in L$, there exists exactly one witness w such that R(x, w) = 1.

Examples of languages:

- Factor = { $N \mid \exists$ primes $p \leq q$ s.t. N = pq}
- $DDH = \{(g, a, b, c) \mid \exists x, y \text{ s.t. } a = g^x, b = g^y, c = g^{xy}\}$

• ImF = { $x \mid \exists y \text{ s.t. } F(y) = x$ } where F is an injective function

Proposed by Wee (Eurocrypt '22). Fix distributions S, B and P (possibly correlated).

if

 $(SB, SP) \approx_{c} (\mathcal{U}, \mathcal{U})$

Proposed by Wee (Eurocrypt '22). Fix distributions \mathbf{S}, \mathbf{B} and \mathbf{P} (possibly correlated).

if

 $(\underline{SB},\underline{SP})\approx_{c}(\mathscr{U},$

 $\sim correlated).$

Throughout this talk, squiggly lines indicate **noise**

Proposed by Wee (Eurocrypt '22). Fix distributions S, B and P (possibly correlated).

if

 $(SB, SP) \approx_{c} (\mathcal{U}, \mathcal{U})$

Proposed by Wee (Eurocrypt '22). Fix distributions S, B and P (possibly correlated).

if then

- $(\mathbf{SB}, \mathbf{SP}) \approx_{c} (\mathcal{U}, \mathcal{U})$
- $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

Proposed by Wee (Eurocrypt '22). Fix distributions S, B and P (possibly correlated).

 $(\mathbf{SB}, \mathbf{SP}) \approx_{c} (\mathcal{U}, \mathcal{U})$ if $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$ then

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Proposed by Wee (Eurocrypt '22). Fix distributions S, B and P (possibly correlated).

$(SB, SP) \approx_{c} (\mathcal{U}, \mathcal{U})$ if $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$ then

much else.

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Intuition: Given SB and $B^{-1}(P)$, can compute $SB \cdot B^{-1}(P) \approx SP$, and not

Proposed by Wee (Eurocrypt '22). Fix distributions **S**, **B** and **P**.

if then

 $(\mathbf{SB}, \mathbf{SP}) \approx_{c} (\mathcal{U}, \mathcal{U})$

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

 $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$

Proposed by Wee (Eurocrypt '22). Fix distributions **S**, **B** and **P**.

$(SB, SP) \approx_{c} (\mathcal{U}, \mathcal{U})$ if $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$ then

so-called "zeroizing regime". Evasive LWE seems to avoid this.

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the

Proposed by Wee (Eurocrypt '22). Fix distributions **S**, **B** and **P**.

$(\mathbf{SB}, \mathbf{SP}) \approx_{c} (\mathcal{U}, \mathcal{U})$ if $(\mathbf{SB}, \mathbf{B}^{-1}(\mathbf{P})) \approx_{c} (\mathcal{U}, \mathbf{B}^{-1}(\mathbf{P}))$ then

- so-called "zeroizing regime". Evasive LWE seems to avoid this.
 - Idea: Collect many equations on low-norm secrets over low-norm constants. Solve over integers!

 $\mathbf{B}^{-1}(\mathbf{P})$ is a Gaussian preimage sample such that $\mathbf{B} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{P}$

• Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

one can compute the product:

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$,
 - $(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{S}^{-1}(\mathbf{P})$$

 $\mathbf{P} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{S}^{-1}(\mathbf{P})$$

 $\mathbf{F} \mathbf{P} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{S}^{-1}(\mathbf{P})$$

 $\mathbf{B} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$$

• Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$$

- Now, we can solve for E over $\underline{integers},$ because everything on RHS has $\underline{low-norm}.$

• Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$$

- Now, we can solve for E over $\underline{integers},$ because everything on RHS has $\underline{low-norm}.$
- With E in the clear, no more LWE guarantees on SB + E!

• Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$$

- Now, we can solve for E over $\underline{integers},$ because everything on RHS has $\underline{low-norm}.$
- With ${f E}$ in the clear, no more LWE guarantees on ${f SB}+{f E}!$
- Similar attack works for SP with correlated rows.

- Extreme example: Suppose SP = 0. Then, given SB + E and $B^{-1}(P)$, one can compute the product:

$$(\mathbf{SB} + \mathbf{E}) \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{SP} + \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P}) = \mathbf{E} \cdot \mathbf{B}^{-1}(\mathbf{P})$$

- Now, we can solve for E over $\underline{integers},$ because everything on RHS has $\underline{low-norm}.$
- With ${f E}$ in the clear, no more LWE guarantees on ${f SB}+{f E}!$
- Similar attack works for SP with correlated rows.
- Evasive LWE: This is the only attack! Doesn't work if $\underbrace{SP}_{\hspace{-1.5mm} \sim \hspace{-1.5mm} \sim}$ were uniform.

Main Tool
• Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for *"matrix programs"* $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for *"matrix programs"* $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):
 - if $({F_k(x)}_x, aux) \approx (\mathcal{U}, aux)$

- Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for *"matrix programs"* $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):
 - if $({F_k(x)}_x, aux) \approx (\mathcal{U}, aux)$ (i.e. the function is a "very secure PRF")

• Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for *"matrix programs"* $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

if
$$(\{F_k(x)\}_x, aux) \approx$$

then $(\mathcal{O}(F_k), aux) \approx$

(i.e. the function is a "very secure PRF")

 (\mathcal{D}, aux)

 (\mathcal{U}, aux)

• Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

if
$$(\{F_k(x)\}_x, aux) \approx$$

then $(\mathcal{O}(F_k), aux) \approx$

- $(\mathcal{U}, \mathsf{aux})$
- $(\mathcal{D}, \mathsf{aux})$
- (i.e. the function is a "very secure PRF")
- (i.e. the obfuscation leaks nothing more than the outputs)

• Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for *"matrix programs"* $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

if
$$(\{F_k(x)\}_x, aux) \approx$$

then $(O(F_k), aux) \approx$

Follows techniques of [GGH15] and generalises [VWW22].

• Using evasive LWE, we construct a new "average-case obfuscation" 0 for "matrix programs" $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

$$\begin{array}{ll} \text{if} & (\{F_k(x)\}_x, \mathtt{aux}) \approx \\ \text{then} & (\mathcal{O}(F_k), \mathtt{aux}) \approx \end{array} \end{array} \end{array}$$

- Follows techniques of [GGH15] and generalises [VWW22].
- •

Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

• Using evasive LWE, we construct a new "average-case obfuscation" \mathcal{O} for "matrix programs" $\{F_k\}_{k \in K}$ with roughly the following guarantee (over $k \leftarrow K$):

if
$$(\{\underbrace{F_k(x)}\}_x, aux) \approx (\mathscr{U}, aux)$$
(i.e. the function is a "very secure PRFthen $(\mathcal{O}(F_k), aux) \approx (\mathscr{D}, aux)$ (i.e. the obfuscation leaks nothing months)

- Follows techniques of [GGH15] and generalises [VWW22].
- Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc
- Use this obfuscation to instantiate a "Sahai-Waters"-like SNARG. More details later!

TL;DR

TL;DR

In this work, we

- 1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE
- - Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from **SNARG** for UP to **SNARK** for UP.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

SNARGS VS. SNARKS

• <u>Succinct</u> <u>Non-Interactive</u> <u>Argument of</u> <u>Knowledge</u>

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument of</u> <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

 ${\mathcal X}$

Up

 ${\mathcal X}$

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

Ext

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

SNARGS VS. SNARKS

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

P		Ext
	\mathcal{X}	→
	crs _i	
	π_i	

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- <u>Succinct</u> <u>Non-Interactive</u> <u>Argument</u> of <u>Knowledge</u>
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- Succinct Non-Interactive Argument of Knowledge •
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- Succinct Non-Interactive Argument of Knowledge •
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- Succinct Non-Interactive Argument of Knowledge •
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- Succinct Non-Interactive Argument of Knowledge \bullet
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.

- Succinct Non-Interactive Argument of Knowledge \bullet
 - One can *extract* a witness from accepting • proofs, i.e. the prover must "know" the witness.

Knowledge soundness: $\exists Ext$, if \mathscr{P} can create accepting proofs for x with $1/\mathsf{poly}(n)$ probability, $\mathsf{Ext}^{\mathscr{P}(x)}$ outputs a *w*.

- Succinct Non-Interactive Argument of Knowledge \bullet
 - One can *extract* a witness from accepting • proofs, i.e. the prover must "know" the witness.

Knowledge soundness: $\exists Ext$, if \mathscr{P} can create accepting proofs for x with $1/\mathsf{poly}(n)$ probability, $\mathsf{Ext}^{\mathscr{P}(x)}$ outputs a *w*.

- Succinct Non-Interactive Argument of Knowledge \bullet
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.
 - **Recall:** Regular SNARG definition has no \bullet soundness guarantees if a prover does not **know a witness** for $x \in L$.

Knowledge soundness: $\exists Ext$, if \mathscr{P} can create accepting proofs for x with $1/\mathsf{poly}(n)$ probability, $\mathsf{Ext}^{\mathscr{P}(x)}$ outputs a w.

- Succinct Non-Interactive Argument of Knowledge
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.
 - **Recall:** Regular SNARG definition has no \bullet soundness guarantees if a prover does not **know a witness** for $x \in L$.
- SNARKs "compose better" than SNARGs with cryptographic objects

create accepting proofs for x with $1/\mathsf{poly}(n)$ probability, $\mathsf{Ext}^{\mathscr{P}(x)}$ outputs a *w*.

- Succinct Non-Interactive Argument of Knowledge
 - One can *extract* a witness from accepting proofs, i.e. the prover must "know" the witness.
 - **Recall:** Regular SNARG definition has no \bullet soundness guarantees if a prover does not **know a witness** for $x \in L$.
- SNARKs "compose better" than SNARGs with cryptographic objects
 - E.g. Somewhere extractable BARGs

create accepting proofs for x with $1/\mathsf{poly}(n)$ probability, $\mathsf{Ext}^{\mathscr{P}(x)}$ outputs a *w*.

• Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!

P

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!

P

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

Ext
Barrier to SNARKs for NP P Ext ${\mathcal X}$

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

 π_1

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

Rewind **4**

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.
 - The prover might use a different witness each time!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!
 - Hard to piece together a single witness! Can be formalised in terms of **leakage** resilience.

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!
 - Hard to piece together a single witness! Can be formalised in terms of **leakage** resilience.
- Impossibility doesn't hold for UP!

Barrier to SNARKs for NP

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "<u>small leakage</u>" on a witness.
 - The prover might use a different witness each time!
 - Hard to piece together a single witness!
 Can be formalised in terms of leakage
 resilience.
- Impossibility doesn't hold for UP!

- Black-box extraction is impossible for all of NP from falsifiable assumptions! [CGKS23]
 - Each proof is a "small leakage" on a witness.

Qn: Can we build SNAR<u>K</u>s for UP from falsifiable assumptions?

- Hard to piece together a single wither Can be formalised in terms of leakag resilience.
- Impossibility doesn't hold for UP!

		149	4			
		W_2	~			
ess!				π_2		
Je	Rewind 4			crsa		
		W ₃		CT 5/2		
				π_3		

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

Theorem 2: Assuming polynomial hardness of LWE, an adaptively sound SNARG for UP can be used to construct an adaptively sound SNARK for UP, while preserving zero-knowledge.

 Our transformation follows [CGKS2: SNARG for NP to SNARK for UP.

• Our transformation follows [CGKS23] who show a similar transformation from

Theorem 2: Assuming polynomial hardness of LWE, an **adaptively** sound SNARG for UP can be used to construct an adaptively sound **SNARK** for **UP**, while preserving **zero-knowledge**.

- SNARG for **NP** to SNARK for **UP**.
- We also correct some issues in their work:

Our transformation follows [CGKS23] who show a similar transformation from

Theorem 2: Assuming polynomial hardness of LWE, an **adaptively** sound SNARG for UP can be used to construct an adaptively sound **SNARK** for **UP**, while preserving **zero-knowledge**.

- SNARG for **NP** to SNARK for **UP**.
- We also correct some issues in their work:
 - SNARGs for NP.

Our transformation follows [CGKS23] who show a similar transformation from

• Their transformation (as is) is not zero-knowledge and requires adaptive

Adaptive Soundness

Adaptive Soundness

Common Reference String (crs)

Adaptive Soundness

Common Reference String (crs)

 x^*, π^*

Adaptive Soundness

Common Reference String (crs)

 x^*, π^*

 $x^* \notin L$

Adaptive Soundness

Common Reference String (crs)

 x^*, π^*

Non-Adaptive Soundness

 $x^* \notin L$

Common Reference String (crs)

Adaptive Soundness

Common Reference String (crs)

 x^*, π^*

Non-Adaptive Soundness

 $x^* \notin L$

Common Reference String (crs)

 π^*

7/

Adaptive Soundness

Common Reference String (crs)

$$x^*, \pi^*$$

Non-Adaptive Soundness

(Informal) Gentry-Wichs Barrier: If a language takes time 2^{n^o} to "decide", there is no 2^{n^e} for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

Adaptive Soundness

Non-Adaptive Soundness

(Informal) Gentry-Wichs Barrier: If a language takes time 2^{n^o} to "decide", there is no 2^{n^c} for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

• An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.

- An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in [0,1]$ s.t. the assumption is considered "broken" if $\Pr[\mathscr{A} \text{ wins}] \geq c + \operatorname{negl}(\lambda)$.

- An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in [0,1]$ s.t. the assumption is considered "broken" if $\Pr[\mathscr{A} \text{ wins}] \geq c + \operatorname{negl}(\lambda)$.

2

- An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in [0,1]$ s.t. the assumption is considered "broken" if $\Pr[\mathscr{A} \text{ wins}] \geq c + \operatorname{negl}(\lambda)$.

2

- An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in [0,1]$ s.t. the assumption is considered "broken" if $\Pr[\mathscr{A} \text{ wins}] \geq c + \operatorname{negl}(\lambda)$.

- An assumption is falsifiable if there exists an <u>efficient</u> challenger \mathscr{C} that can decide if an adversary \mathscr{A} "won" the game.
- An assumption usually is associated with a parameter $c \in [0,1]$ s.t. the assumption is considered "broken" if $\Pr[\mathscr{A} \text{ wins}] \geq c + \operatorname{negl}(\lambda)$.

or lose

- E.g. Decision problems like DDH and LWE have parameter c = 1/2
- E.g. Search problems like OWF, DLOG have parameter c = 0

• Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $iO(C_1) \approx_c iO(C_2)$.

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_1, C_2

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_{1}, C_{2}

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_{1}, C_{2}

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_{1}, C_{2}

b'

Accept if b = b'

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_{1}, C_{2}

b'

Accept if b = b'and $C_1 \equiv C_2$

- Eg 1: Decisional LWE: $(A, As + e) \approx_{c} (A, b)$.
- "Eg" 2: For all $C_1 \equiv C_2$, $i \mathcal{O}(C_1) \approx_c i \mathcal{O}(C_2)$.

 C_{1}, C_{2}

b'

Takes up to $2^{|x|}$ time to check

Accept if b = b'and $C_1 \equiv C_2$

SNARG to SNARK Transformation

SNARG for NP from iO [SW14]

SNARG to SNARK Transformation

SNARGs from Falsifiable Assumptions

What is the password?

What is the password?

Exponential time reduction

What is the password?

Exponential time reduction

You may proceed... with caution

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\delta}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

• One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\circ}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- **Issue:** It is not clear that one can maintain <u>succinctness</u> while doing this. ullet

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\circ}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- **Issue:** It is not clear that one can maintain <u>succinctness</u> while doing this.
 - succinctness.

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\circ}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

• Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain

- One interpretation: One has to rely on sub-exponential hardness assumptions to obtain adaptive soundness.
- **Issue:** It is not clear that one can maintain <u>succinctness</u> while doing this. \bullet
 - succinctness.
- \bullet Feb 2024*).

*Feb 2024: [WW24], [MPV24], [WZ24]

(Informal) Gentry-Wichs Barrier: If a language takes time $2^{n^{\circ}}$ to "decide", there is no $2^{n^{\epsilon}}$ for $\epsilon < \delta$ black-box reduction to *falsifiable assumptions* that shows **adaptive soundness**.

• Eq. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain

No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to

Theorem 3. We show that our dvSNARG for UP is <u>adaptively sound</u>.

- Theorem 3. We show that our dvSNARG for UP is <u>adaptively sound</u>.
- additional assumptions.

Theorem 4. Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made *adaptively sound* in the *designated verifier* setting with no

- Theorem 3. We show that our dvSNARG for UP is <u>adaptively sound</u>.
- additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either

• **Theorem 4.** Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made *adaptively sound* in the *designated verifier* setting with no

- Theorem 3. We show that our dvSNARG for UP is <u>adaptively sound</u>.
- additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either
 - LWE and evasive LWE

• **Theorem 4.** Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made *adaptively sound* in the *designated verifier* setting with no

- Theorem 3. We show that our dvSNARG for UP is adaptively sound.
- additional assumptions.
- Corollary: Adaptively sound dv-zkSNARKs for UP from either
 - LWE and evasive LWE
 - LWE, subexponentially-secure iO, subexponentially-secure OWF

• **Theorem 4.** Any "Sahai-Waters"-like sub-exponentially sound SNARG can be made **adaptively sound** in the **designated verifier** setting with no

SNARG for NP from iO [SW14]

SNARG to SNARK Transformation

SNARG for NP from iO [SW14]

SNARG for NP from iO [SW14]

Adaptive dvSNARG for UP from evasive LWE

Adaptive dvSNARK for UP

Adaptive dvSNARG for NP from iO

Concurrent works

Concurrent works

publicly verifiable SNARGs for NP.

• Beautiful concurrent works [WW24, WZ24] construct adaptively secure

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
 - [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.
Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
 - [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.
 - [WZ24] Sub-exponential iO + OWF, LWE.

Concurrent works

- Beautiful concurrent works [WW24, WZ24] construct adaptively secure publicly verifiable SNARGs for NP.
 - [WW24] Sub-exponential iO + OWF, hardness of factoring/discrete log.
 - [WZ24] Sub-exponential iO + OWF, LWE.
- Corollary: <u>Publicly verifiable</u> SNAR<u>K</u>s for UP using our/[CGKS23] compiler.

Adaptive SNARG for NP from iO + X [WW24, WZ24]

TL;DR

In this work, we

1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE

2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
- 3. Transformation from **SNARG for UP** to **SNARK** for **UP**.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

• We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R).$

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pl}$

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pk}$
- Security: If $x \notin L$, $(pk, F_{sk}(x)) \approx_c (pk, r)$ where r is a random string.

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

- special case of witness PRF.
- Fix an NP relation R. Witness PRF is
- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pl}$
- Security: If $x \notin L$, $(pk, F_{sk}(x)) \approx_c (pk, r)$ where r is a random string.

• We view the "Sahai-Waters" SNARG in the designated verifier setting as a

Hybrid between witness encryption 7). and constrained PRFs

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of **witness PRF**.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pk}$
- Security: If $x \notin L$, $(pk, F_{sk}(x)) \approx_c (pk, r)$ where r is a random string.

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R)$.
- Correctness: If R(x, w) = 1, $Eval_{pl}$
- Security: If $x \notin L$, $(pk, F_{sk}(x)) \approx_c (pk, r)$ where r is a random string.

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.

- We view the "Sahai-Waters" SNARG in the <u>designated verifier setting</u> as a special case of witness PRF.
- Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
- $(pk, sk) \leftarrow wPRF. Gen(R)$.
- Correctness: If R(x, w) = 1, $Eval_{pl}$
- Security: If $x \notin L$, $(pk, F_{sk}(x)) \approx_c (pk, r)$ where r is a random string.

$$_{\mathsf{k}}(x,w) = F_{\mathsf{sk}}(x).$$

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF. **Our UP SNARG:** Adaptive witness PRF for UP from evasive LWE.

• Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

• Public key: Let PRF be a <u>puncturable</u> PRF. Key is the obfuscation of this:

• Public key: Let PRF be a puncturable PRF. Key is the obfuscation of this:

• Secret key: PRF Key k.

Correctness: If R(x, w) = 1, then • **Public key:** Let PRF be a <u>puncturable</u> PRF. Key is the obfuscation of this: obfuscation outputs $PRF_k(x)$.

• Secret key: PRF Key k.

Correctness: If R(x, w) = 1, then • **Public key:** Let PRF be a <u>puncturable</u> PRF. Key is the obfuscation of this: obfuscation outputs $\mathsf{PRF}_k(x)$.

• Secret key: PRF Key k.

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

Non-adaptive security: If $x^* \notin L$, replace k in obfuscation with punctured key $k\{x^*\}$.

Correctness: If R(x, w) = 1, then • **Public key:** Let PRF be a <u>puncturable</u> PRF. Key is the obfuscation of this: obfuscation outputs $\mathsf{PRF}_k(x)$.

• Secret key: PRF Key k.

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

Non-adaptive security: If $x^* \notin L$, replace k in obfuscation with punctured key $k\{x^*\}$.

Correctness: If R(x, w) = 1, then • Public key: Let PRF be a <u>puncturable</u> PRF. Key is the obfuscation of this: obfuscation outputs $\mathsf{PRF}_k(x)$.

• Secret key: PRF Key k.

Disclaimer: This slide is targeted at those of you familiar with Sahai-Waters SNARG.

Non-adaptive security: If $x^* \notin L$, replace k in obfuscation with punctured key $k\{x^*\}$.

 $(\mathsf{pk}, \mathsf{PRF}_k(x)) \approx_c (\mathsf{pk}', r)$

Witness PRF for ${\it R}$

- $(pk, sk) \leftarrow wPRF.Gen(R)$.
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

Witness PRF for ${\it R}$

- $(pk, sk) \leftarrow wPRF.Gen(R)$.
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

7/

Witness PRF for ${\it R}$

- $(pk, sk) \leftarrow wPRF.Gen(R).$
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

State = sk \int

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

State = sk \int

$\pi = \mathsf{Eval}_{\mathsf{pk}}(x, w)$

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

State = sk \int

 $\pi = \mathsf{Eval}_{\mathsf{pk}}(x, w) \quad \underline{x, \pi}$

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pk}(x, w) = F_{sk}(x).$
- Security: If $x \notin L$, pk hides the value of $F_{sk}(x)$, i.e. $F_{sk}(x)$ looks random.

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{\rm sk}(x)$, i.e. $F_{\rm sk}(x)$ looks random.

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, Eval_{pk} $(x, w) = F_{sk}(x)$.
- Security: If $x \notin L$, pk hides the value of $F_{sk}(x)$, i.e. $F_{sk}(x)$ looks random.

Claim: For $x^* \notin L$, $(\operatorname{crs}, F_{\operatorname{sk}}(x^*)) \approx_c (\operatorname{crs}, r).$ Moreover, this transformation preserves adaptiveness.

Witness PRF to SNARG Template

- $(pk, sk) \leftarrow wPRF. Gen(R).$
- Correctness: If R(x, w) = 1, $Eval_{pk}(x, w) = F_{sk}(x).$
- **Security:** If $x \notin L$, pk hides the value of $F_{sk}(x)$, i.e. $F_{sk}(x)$ looks random.

Complexity Leveraging the Witness PRF
We argued that the resulting SNARG is adaptively sound if the witness PRF is \bullet adaptively sound.

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. ullet

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. \bullet
- \bullet polynomially secure!

Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is • adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. \bullet
- \bullet polynomially secure!

Non-adaptive Adversary

Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is • adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. lacksquare
- \bullet polynomially secure!

Non-adaptive Adversary

Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is • adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. \bullet
- \bullet polynomially secure!

Adaptive **Adversary**

Non-adaptive Adversary

> Choose random $x^* \notin L$

Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is

Å

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is • adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. \bullet
- \bullet polynomially secure!

Adaptive **Adversary**

Non-adaptive Adversary

Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is

Non-adaptive C Å Challenger Choose random X^* $x^* \notin L$

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is • adaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security. \bullet
- Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is \bullet polynomially secure!

Adaptive **Adversary**

Non-adaptive Adversary

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is ulletadaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is \bullet polynomially secure!

Adaptive **Adversary**

Non-adaptive Adversary

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is lacksquareadaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is \bullet polynomially secure!

- We argued that the resulting SNARG is **adaptively sound** if the witness PRF is lacksquareadaptively sound.
- Take a **non-adaptive witness PRF** construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an **adaptive** witness PRF which is \bullet polynomially secure!

- We argued that the resulting SNARG is adaptively sound if the witness PRF is adaptively sound.
- Take a non-adaptive witness PRF construction with $2^{-(|x|+\lambda)}$ security.
- Complexity leverage the witness PRF to obtain an adaptive witness PRF which is polynomially secure!

Witness PRF to SNARG Template

Witness PRF to SNARG Template

- The length of π is depends only on security parameter of the SNARG!
- Can decouple the wPRF security indistinguishability parameter from proof search size.

Witness PRF to SNARG Template

- The length of π is depends only on security parameter of the SNARG!
- Can decouple the **wPRF security** indistinguishability parameter from proof search size.
- We can choose proof size $\sim \lambda$ for $2^{-\lambda}$ soundness!

TL;DR

In this work, we

1. Build a designated-verifier **SNARG for UP** from LWE and evasive LWE

- Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
- 3. Transformation from **SNARG for UP** to **SNARK** for **UP**.
 - Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any "Sahai-Waters"-like dvSNARG can be made adaptively sound.

- 3. Transformation from **SNARG for UP** to **SNARK** for **UP**.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Build a witness PRF for UP from evasive LWE

Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

evasive LWE.

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

$$W_{K_1,K_2}(x,w) = \left\{ \right.$$

Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from

 $F_{K_1}(x)$ if R(x, w) = 1

 $G_{K_2}(x,w)$ otherwise

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

$$W_{K_1,K_2}(x,w) = \left\{ \right.$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- $F_{K_1}(x)$ if R(x, w) = 1
- $G_{K_2}(x,w)$ otherwise

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

$$W_{K_1,K_2}(x,w) = \begin{cases} \\ \end{cases}$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

• If x has two witness w_1, w_2 , then $W_{K_1, K_2}(x, w_1) = W_{K_1, K_2}(x, w_2)$ (i.e. zeroizing regime!)

- $F_{K_1}(x)$ if R(x, w) = 1
- $G_{K_2}(x,w)$ otherwise

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

$$W_{K_1,K_2}(x,w) = \left\{ \right.$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

• If x has two witness w_1, w_2 , then $W_{K_1, K_2}(x, w_1) = W_{K_1, K_2}(x, w_2)$ (i.e. zeroizing regime!)

• Step 3: Construct wPRF: pk = O(W), $sk = K_1$. The obfuscation guarantee, for $x^* \notin L$:

- $\int F_{K_1}(x)$ if R(x, w) = 1
- $G_{K_2}(x,w)$ otherwise

- evasive LWE.
- Step 2: Consider the following function constructed from PRFs F_{K_1} and G_{K_2} .

$$W_{K_1,K_2}(x,w) = \left\{ \right.$$

This is a PRF if R is a UP relation. If not UP, then this might not hold!

• If x has two witness w_1, w_2 , then $W_{K_1, K_2}(x, w_1) = W_{K_1, K_2}(x, w_2)$ (i.e. zeroizing regime!)

• Step 3: Construct wPRF: pk = O(W), $sk = K_1$. The obfuscation guarantee, for $x^* \notin L$:

Step 1: "Average-case obfuscation" for functions with pseudorandom outputs from

- $F_{K_1}(x)$ if R(x, w) = 1
- $G_{K_2}(x,w)$ otherwise

 $(\mathsf{pk}, F_{K_1}(x^*)) \approx_c (\mathsf{pk}, r)$

We build adaptively sound designated-verifier SNARGs for:

- We build adaptively sound designated-verifier SNARGs for:
 - UP from LWE and evasive LWE

- We build adaptively sound designated-verifier SNARGs for:
 - UP from LWE and evasive LWE
 - NP from sub-exponential iO + OWF

- We build adaptively sound designated-verifier SNARGs for:
 - UP from LWE and evasive LWE
 - NP from sub-exponential iO + OWF
- SNARKs for UP assuming polynomially secure LWE.

We show that adaptively sound SNARGs for UP can be transformed into

- We build adaptively sound designated-verifier SNARGs for:
 - UP from LWE and evasive LWE
 - NP from sub-exponential iO + OWF
- SNARKs for UP assuming polynomially secure LWE.
 - We can build SNARKs from **falsifiable assumptions**!

• We show that adaptively sound SNARGs for UP can be transformed into

• Can we construct witness PRFs directly from LWE?

- Can we construct witness PRFs directly from LWE?
 - Can we prove evasive LWE from LWE?

- Can we construct witness PRFs directly from LWE?
 - Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?

- Can we construct witness PRFs directly from LWE?
 - Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?

- Can we construct witness PRFs directly from LWE?
 - Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?
 - Have to be very careful about zeroizing attacks!

- Can we construct witness PRFs directly from LWE?
 - Can we prove evasive LWE from LWE?
- What else can we prove from evasive LWE that we can build from obfuscation?
- Can we transform our SNARG into a publicly verifiable SNARG?
 - Have to be very careful about zeroizing attacks!
- Can we get a SNARG with a smaller CRS? Can we get a common random/ transparent string?

Thank you very much for your attention!

Bonus Slides

• Consider a matrix branching program given by $\mathbf{P} = {\mathbf{u}, {\mathbf{M}_{i,b}}_{i \in [k], b \in \{0,1\}}, \mathbf{v}}.$ Then, suppose that:

 Consider a matrix branching program given by $P = \{u, \{M_{i,b}\}_{i \in [k], b \in \{0,1\}}, v\}$. Then, suppose that:

$$\left\{\mathbf{u}\left(\prod \mathbf{M}_{i,x_{i}}\right)\mathbf{v}\right\}_{x\in\{x_{i},x_{$$

, aux $\approx_c \{\mathcal{U}\}_{x \in \{0,1\}^k}$, aux $\{0,1\}^k$

 Consider a matrix branching program given by $P = \{u, \{M_{i,b}\}_{i \in [k], b \in \{0,1\}}, v\}$. Then, suppose that:

$$\left\{\mathbf{u}\left(\prod \mathbf{M}_{i,x_{i}}\right)\mathbf{v}\right\}_{x\in\{x_{i},x_{$$

, aux $\approx_c \{\mathcal{U}\}_{x \in \{0,1\}^k}$, aux $\{0,1\}^k$

> (i.e. the function is a "very secure PRF" when noise is added)

 Consider a matrix branching program given by $\mathbf{P} = {\mathbf{u}, {\mathbf{M}_{i,b}}_{i \in [k], b \in \{0,1\}}, \mathbf{v}}.$ Then, suppose that:

$$\left\{\mathbf{u}\left(\prod \mathbf{M}_{i,x_{i}}\right)\mathbf{v}\right\}_{x\in\{x_{i},x_{$$

• Then, our obfuscation guarantees that $(\mathcal{O}(P), aux) \approx_c (\mathcal{D}, aux)$.

, aux $\approx_c \{\mathcal{U}\}_{x \in \{0,1\}^k}$, aux $\{0,1\}^k$

(i.e. the function is a "very secure PRF" when noise is added)

 Consider a matrix branching program given by $P = \{u, \{M_{i,b}\}_{i \in [k], b \in \{0,1\}}, v\}$. Then, suppose that:

$$\left\{\mathbf{u}\left(\prod \mathbf{M}_{i,x_{i}}\right)\mathbf{v}\right\}_{x\in\{x_{i},x_{$$

• Then, our obfuscation guarantees that $(\mathcal{O}(P), aux) \approx_c (\mathcal{D}, aux)$.

$$, aux ≈_{c} {\mathscr{U}}_{x \in \{0,1\}^{k}}, aux$$

 $, 1\}^{k}$

(i.e. the function is a "very secure PRF" when noise is added)

(i.e. the obfuscation leaks nothing more than the outputs)

by**u**, $\{M_{i,b}\}_{i \in [h], b \in \{0,1\}}$, **v** satisfying:

• Step 1: Consider a read-once branching program PRF F_k : $\{0,1\}^h \rightarrow \mathcal{Y}$ given

• Step 1: Consider a read-once branching program PRF F_k : $\{0,1\}^h \rightarrow \mathcal{Y}$ given by**u**, $\{M_{i,b}\}_{i \in [h], b \in \{0,1\}}$, **v** satisfying:

 $F_k(\mathbf{x}) =$

$$= \mathbf{u} \left(\prod_{i=1}^{h} \mathbf{M}_{i,x_i} \right) \mathbf{v}$$

by**u**, $\{M_{i,b}\}_{i \in [h], b \in \{0,1\}}$, **v** satisfying:

Take the subset product! $F_k(\mathbf{x}) = \mathbf{u} \left(\prod_{i=1}^h \mathbf{M}_{i,x_i} \right) \mathbf{v}$

• Step 1: Consider a read-once branching program PRF F_k : $\{0,1\}^h \rightarrow \mathcal{Y}$ given

by**u**, $\{M_{i,b}\}_{i \in [h], b \in \{0,1\}}$, **v** satisfying:

Note: There are no readonce PRFs, but we assume this for simplicity.

Take the subset product! $F_k(\mathbf{x}) = \mathbf{u} \left(\prod_{i=1}^h \mathbf{M}_{i,x_i} \right) \mathbf{v}$

• Step 1: Consider a read-once branching program PRF F_k : $\{0,1\}^h \rightarrow \mathcal{Y}$ given

• Step 1: Consider a read-once branching program PRF F_k : $\{0,1\}^h \rightarrow \mathcal{Y}$ given by**u**, $\{M_{i,b}\}_{i \in [h], b \in \{0,1\}}$, **v** satisfying: Take the subset product!

Note: There are no readonce PRFs, but we assume this for simplicity.

program.

• Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching

<i>M</i> _{1,0}	
	<i>S</i> _{1,0}

<i>M</i> _{2,0}	
	<i>S</i> _{2,0}

<i>M</i> _{1,1}	
	<i>S</i> _{1,1}

<i>M</i> _{2,1}	
	<i>S</i> _{2,1}

<i>M</i> _{3,0}	
	<i>S</i> _{3,0}

 $M_{3,1}$ $S_{3,1}$

<i>M</i> _{2,1}	
	<i>S</i> _{2,1}

<i>M</i> _{3,0}	
	<i>S</i> _{3,0}

 $M_{3,1}$ $S_{3,1}$

<i>M</i> _{2,1}	
	<i>S</i> _{2,1}

<i>M</i> _{3,0}		
	<i>S</i> _{3,0}	\0 /

<i>M</i> _{2,1}	
	<i>S</i> _{2,1}

<i>M</i> _{2,1}	
	<i>S</i> _{2,1}

<i>M</i> _{3,0}		
	<i>S</i> _{3,0}	\0 /

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** =

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations $\mathbf{B} = \mathbf{A}_{2}$

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations

- $\mathbf{B}=\mathbf{A}_{2}$
- Two matrices $\mathbf{P} =$

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations

 $\mathbf{B} = \mathbf{A}_2$

Then:

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations

 $\mathbf{B} = \mathbf{A}_2$

Then:

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations $\mathbf{B} = \mathbf{A}_2$

Two matrices $\mathbf{P} =$

Then:

 $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$

GGH15 Encodings

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set **S** = All $2^2 = 4$ evaluations

 $\mathbf{B} = \mathbf{A}_2$

Two matrices $\mathbf{P} =$

Then:

 $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

GGH15 Encodings

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set All $2^2 = 4$ evaluations $\mathbf{S} =$ $\mathbf{B} = \mathbf{A}_2$ $\mathbf{P} =$ Two matrices

Then: $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

All possible evaluated products are of the form: $\mathbf{SB} = \{\mathbf{u}M_{1,x_1}M_{2,x_2}\overline{\mathbf{A}_2} + \mathbf{1}S_{1,x_1}S_{2,x_2}\underline{\mathbf{A}_2}\}_{x_1,x_2 \in \{0,1\}}$

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set All $2^2 = 4$ evaluations $\mathbf{S} =$ $\mathbf{B} = \mathbf{A}_2$ $\mathbf{P} =$ Two matrices

Then: $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

All possible evaluated products are of the form: $\mathbf{SB} = \{\mathbf{u}M_{1,x_1}M_{2,x_2}\overline{\mathbf{A}_2} + \mathbf{1}S_{1,x_1}S_{2,x_2}\underline{\mathbf{A}_2}\}_{x_1,x_2 \in \{0,1\}}$ pseudorandom (with noise) by LWE!

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set All $2^2 = 4$ evaluations $\mathbf{S} =$ $\mathbf{B} = \mathbf{A}_2$ $\mathbf{P} =$ Two matrices

Then: $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

All possible evaluated products are of the form: $\mathbf{SB} = \{\mathbf{u}M_{1,x_1}M_{2,x_2}\overline{\mathbf{A}_2} + \mathbf{1}S_{1,x_1}S_{2,x_2}\underline{\mathbf{A}_2}\}_{x_1,x_2 \in \{0,1\}}$ pseudorandom (with noise) by LWE!

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set All $2^2 = 4$ evaluations $\mathbf{S} =$ $\mathbf{B} = \mathbf{A}_{2}$ $\mathbf{P} =$ Two matrices

Then: $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

 $SB, SP \approx_{c} \mathcal{U}, \mathcal{U} \Rightarrow SB, B^{-1}(P) \approx_{c} \mathcal{U}, B^{-1}(P)$

pseudorandom (with noise) by LWE!

- Sample $S_{i,b} \leftarrow \chi^{c \times c}$ (i.e. small entries)
- Sample A_2 with a trapdoor

Set All $2^2 = 4$ evaluations $\mathbf{S} =$ $\mathbf{B} = \mathbf{A}_{2}$ $\mathbf{P} =$ Two matrices

Then: $\mathbf{SP} = \{F_k(\mathbf{x})\}_{\mathbf{x} \in \{0,1\}^3} \approx \mathcal{U}$ Because F_k is a PRF

 $SB, SP \approx_{c} \mathcal{U}, \mathcal{U} \Rightarrow SB, B^{-1}(P) \approx_{c} \mathcal{U}, B^{-1}(P)$

- Repeatedly apply evasive LWE!
- Shrunk the size from 2^h evaluated products to size to 2h matrices.

- Repeatedly apply evasive LWE!
- Shrunk the size from 2^h evaluated products to size to 2h matrices.

