Adaptively Sound
Zero-Knowledge SNARKSs for UP

Surya Mathialagan Spencer Peters Vinod Vaikuntanathan
MIT Cornell University MIT

TL;DR

TL;DR

In this work, we

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.

* Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
* Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!

3. Transformation from SNARG for UP to SNARK for UP.

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
* Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
3. Transformation from SNARG for UP to SNARK for UP.

* Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
* Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
3. Transformation from SNARG for UP to SNARK for UP.
* Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Succinct Non-interactive ARGument

Fix NP language L

P 7

Instance x, withess w

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

P 7

Instance x, withess w

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

P 7

Instance x, withess w

T = 9P(crs, x, w)

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

P 7

Instance x, withess w X. TT
%

T = 9P(crs, x, w)

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

‘qj Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

‘qj Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x,)

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

‘qj Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x,)

« Completeness: If R(x,w) = 1, then 7' (crs, L(crs, x,w)) = 1.

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

‘qj Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x,)

« Completeness: If R(x,w) = 1, then 7' (crs, L(crs, x,w)) = 1.

» Soundness: For all ppt &°*, hard to come up with cheating proof for x™* & L.

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

qu + Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x,)

« Completeness: If R(x,w) = 1, then 7' (crs, L(crs, x,w)) = 1.

» Soundness: For all ppt &°*, hard to come up with cheating proof for x™* & L.

Succinct Non-interactive ARGument

Fix NP language L

Common Reference String (Crs)

qu + Succinct: %

7| < |w]
Instance x, withess w X. TT
%

T = 9P(crs, x, w)

7 (crs, x,)

« Completeness: If R(x,w) = 1, then 7' (crs, L(crs, x,w)) = 1.
» Soundness: For all ppt &°*, hard to come up with cheating proof for x™* & L.

Pr[(x*, n*) <« P*(crs) Ax* & L A7 (crs,x*, n*) = 1] < negl(4)

Crs

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

= P(crs, x, w)

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
A, T X state (sk)

= P(crs, x, w)

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
A, T X state (sk)

7 (sk, x,)

= P(crs, x, w)

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
X, T X state (sk)

7 (sk, x,)

= P(crs, x, w)

Reusable soundness:
Soundness holds even when

9P* has black-box access to 77

Designated-Verifier SNARG

Common Reference String (Crs)
P 7

Secret verifier T
X, T X state (sk)

7 (sk, x,)

= P(crs, x, w)

Reusable soundness:
Soundness holds even when

9P* has black-box access to 77

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
X, T
= P(crs, x,w) . state (sk)
Accept/Reject W(Sk, X, 71')

Reusable soundness:
Soundness holds even when

9P* has black-box access to 77

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
X, T
= P(crs, x,w) . state (sk)
Accept/Reject W(Sk, X, 71')

Reusable soundness:
Soundness holds even when

9P* has black-box access to 77

Designated-Verifier SNARG

Common Reference String (Crs)

P 7

Secret verifier T
X, T
= P(crs, x,w) . state (sk)
Accept/Reject W(Sk, X, 71')

Reusable soundness:
Soundness holds even when

9P* has black-box access to 77

State of SNARGs

State of SNARGs

ROM/Knowledge NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
Assumptions many many more!

State of SNARGs

ROM/Knowledge NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
Assumptions many many more!

Obfuscation NP [SW14], [JJ22], [WW24], [WZ24]

ROM/Knowledge
Assumptions

Obfuscation

LWE/Other Polynomially
Falsifiable Assumptions

State of SNARGs

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
many many more!

NP [SW14], [JJ22], [WW24], [WZ24]

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22],

Monotone-Policy Batch-NP [BBKLP23], Some of NP N CoNP [JKLV24],
many more!

ROM/Knowledge
Assumptions

Obfuscation

LWE/Other Polynomially
Falsifiable Assumptions

State of SNARGs

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
many many more!

NP [SW14], [JJ22], [WW24], [WZ24]

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22],

Monotone-Policy Batch-NP [BBKLP23], Some of NP N CoNP [JKLV24],
many more!

ROM/Knowledge
Assumptions

Obfuscation

LWE/Other Polynomially
Falsifiable Assumptions

State of SNARGs

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
many many more!

NP [SW14], [JJ22], [WW24], [WZ24]

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22],

Monotone-Policy Batch-NP [BBKLP23], Some of NP N CoNP [JKLV24],
many more!

ROM/Knowledge
Assumptions

Obfuscation

LWE/Other Polynomially
Falsifiable Assumptions

State of SNARGs

NP [Micali94], [Groth10], [DFH11], [BCIOP12], [BCCT13], [BCCGLR14] and
many many more!

NP [SW14], [JJ22], [WW24], [WZ24]

Batch-NP [CJJ21, WW22], P [KRR14, KPY19, CJJ21], NTISP [KVZ22],

Monotone-Policy Batch-NP [BBKLP23], Some of NP N CoNP [JKLV24],
many more!

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE Obfuscation

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:

LWE Obfuscation

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬁ 1 WE % Obfuscation
B B

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:
 Optimal Broadcast Encryption and CP-ABE [Wee22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:
 Optimal Broadcast Encryption and CP-ABE [Wee?22]
* Witness Encryption [Tsabary22, VWW?22], Null-iO [VWW22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:
 Optimal Broadcast Encryption and CP-ABE [Wee?22]

* Witness Encryption [Tsabary22, VWW?22], Null-iO [VWW22]
* Multi-Authority ABE [WWW?22]

Our Results

Theorem 1: We construct a dvSNARG for UP from LWE and evasive LWE.

Big Picture:
Evasive
LWE ﬂl | WE ‘m Obfuscation
B i

Many new constructions due to evasive LWE, previously only known from obfuscation:
 Optimal Broadcast Encryption and CP-ABE [Wee?22]

* Witness Encryption [Tsabary22, VWW?22], Null-iO [VWW22]
* Multi-Authority ABE [WWW?22]

 ABE for unbounded depth circuits [HLL23]

UP (or “Unique” P)

UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

Examples of languages:

UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

Examples of languages:

o ImF = {x |dys.t. F(y) = x} where F is an injective function

UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

Examples of languages:

o ImF = {x |dys.t. F(y) = x} where F is an injective function

. Factor = {N | 3 primes p < g s.t. N = pq)

UP (or “Unique” P)

« UP = NP language which has a relation R such that if x € L, there exists
exactly one witness w such that R(x, w) = 1.

Examples of languages:
o ImF = {x |dys.t. F(y) = x} where F is an injective function
« Factor = {N | d primesp < gs.t. N = pqg}

« DDH = {(g,a,b,c) |dx,y st.a=¢g",b=g",c = g"}

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).

if (SB,SP) ~, (%, %)

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).

. o Throughout this talk, squiggly
1 (§§’ §E) ~c (% lines indicate noise

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).

if (SB,SP) ~, (%, %)

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).

] OB,SP) ~. (U, U)
then (SB,B~'(P)) ~. (%,B~(P))

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).
B~!(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'(P)=P

then (SB,B~'(P)) ~. (%,B~(P))

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P (possibly correlated).
B~!(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'(P)=P

then (SB,B~'(P)) ~. (%,B~(P))

Intuition: Given SB and B~1(P), can compute SB - B~1(P) ~ SP, and not
much else. ~

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).
Fix distributions S, B and P.

B~ !(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'(P)=P

then (SB,B~'(P)) ~. (%,B~(P))

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).

Fix distributions S, B and P.
B~!(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'(P)=P

then (SB,B~'(P)) ~. (%,B~(P))

 Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the
so-called “zeroizing regime”. Evasive LWE seems to avoid this.

Tool: Evasive LWE

Proposed by Wee (Eurocrypt ’22).

Fix distributions S, B and P.
B~!(P) is a Gaussian pre-

If (\S\L}, §VI:) ~ .. (%, %) image sample such that

B-B'P)=P

then (SB,B~'(P)) ~. (%,B~(P))

 Motivation: Many attacks on lattice-inspired obfuscation schemes rely on the
so-called “zeroizing regime”. Evasive LWE seems to avoid this.

e |dea: Collect many equations on low-norm secrets over low-norm
constants. Solve over integers!

Zeroizing attacks

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~!(P),
one can compute the product:

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

(SB+E)-B'(P)=SP+E-B'(P)=E:-B (P

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E)- B '(P)=SP+E-B'(P)=E:-B (P

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E) - B !(P)=SP+E-B'(P)=E - -B'(P)

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B'(P)

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

* Now, we can solve for K. over integers, because everything on RHS has
low-norm.

Zeroizing attacks

. Extreme example: Suppose SP = 0. Then, given SB + E and B~(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

* Now, we can solve for K. over integers, because everything on RHS has
low-norm.

« With E in the clear, no more LWE guarantees on SB + E!

Zeroizing attacks

Extreme example: Suppose SP = 0. Then, given SB + E and B~ '(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

Now, we can solve for K over integers, because everything on RHS has
low-norm.

With E in the clear, no more LWE guarantees on SB + E!

Similar attack works for §£ with correlated rows.

Zeroizing attacks

Extreme example: Suppose SP = 0. Then, given SB + E and B~ '(P),
one can compute the product:

SB+E) - B !'(P)=SP+E-B'P)=E-B '(P)

Now, we can solve for K over integers, because everything on RHS has
low-norm.

With E in the clear, no more LWE guarantees on SB + E!
Similar attack works for §£ with correlated rows.

Evasive LWE: This is the only attack! Doesn’t work if SP were uniform.

R a v o™ o

Main Tool

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

if ({F.(x)},,aux) = (%, aux)

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (O(F)),aux) =~ (<, aux)

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (@(Fk)’ aux) ~ (@’ aUX) (i.e. the Obffﬁ;fttiﬁ: Cl)euett:;itr;?thing more

Main Tool

» Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (@(Fk)’ aux) ~ (@’ aUX) (i.e. the Obffﬁ;fttiﬁ: Cl)euett:;itr;?thing more

* Follows techniques of [GGH15] and generalises [VWW22].

Main Tool

Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (@(Fk)’ aux) ~ (@’ aUX) (i.e. the Obffﬁ;fttiﬁ: Cl)euett:;itr;?thing more

Follows techniqgues of [GGH15] and generalises [VWW?22].

Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

Main Tool

Using evasive LWE, we construct a new “average-case obfuscation” O for
“matrix programs” { I, } . x With roughly the following guarantee (over k < K):

If ({Fk(X) }x, aUX) A (%, aUX) (i.e. the function is a “very secure PRF”)

then (@(Fk)’ aux) ~ (@’ aUX) (i.e. the Obffﬁ;fttiﬁ: Cl)euett:;itr;?thing more

Follows techniqgues of [GGH15] and generalises [VWW?22].
Useful notion that immediately implies: Constrained PRFs, shift-hiding PRFs, etc

Use this obfuscation to instantiate a “Sahai-Waters”-like SNARG. More details later!

TL;DR

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
 Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
3. Transformation from SNARG for UP to SNARK for UP.
* Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

SNARGs vs. SNARKS

SNARGs vs. SNARKS

* Succinct Non-Interactive Argument of Knowledge

SNARGs vs. SNARKS

* Succinct Non-Interactive Argument of Knowledge

* One can extract a withess from accepting
proofs, i.e. the prover must “know” the
withess.

SNARGs vs. SNARKS

» Succinct Non-Interactive Argument of Knowledge @

* One can extract a withess from accepting
proofs, i.e. the prover must “know” the
withess.

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting
proofs, i.e. the prover must “know” the
withess.

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the
witness.

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,
withess.

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,
withess. crs;

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,
withess. crs;

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,
withess. crs;

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,
withess. crs;

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

Output w such that
R(x,w) =1

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

Output w such that
R(x,w) =1

Knowledge soundness: JExt, if & can
create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

SNARGs vs. SNARKS

+ Succinct Non-Interactive Argument of Knowledge ~ Gp F xt

* One can extract a withess from accepting X

proofs, i.e. the prover must “know” the e,

withess. . Crs;
Rewind 4 <« O Repeat pOIy

times

Output w such that
R(x,w) =1

Knowledge soundness: JExt, if & can
create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

SNARGs vs. SNARKS

e Succinct Non-Interactive Argument of Knowledge P E xt

* One can extract a witness from accepting X »
proofs, i.e. the prover must “know” the e
witness. . Crs;

Rewind 4 <« O Repeat poly

e Recall: Regular SNARG definition has no Tr; X times
soundness guarantees if a prover does Not --eeeeeeeeee e
know a witness for x € L. Output w such that

R(x,w) =1

Knowledge soundness: JExt, if & can
create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

SNARGs vs. SNARKS

e Succinct Non-Interactive Argument of Knowledge P E xt

* One can extract a witness from accepting X »
proofs, i.e. the prover must “know” the e
witness. . Crs;

Rewind 4 <« O Repeat poly

e Recall: Regular SNARG definition has no Tr; X times
soundness guarantees if a prover does Not --eeeeeeeeee e
know a witness for x € L. Output w such that

R(x,w) =1

« SNARKSs “compose better” than SNARGs with Knowledge soundness: JExt, if & can

cryptographic objects create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

SNARGs vs. SNARKS

 Succinct Non-Interactive Argument of Knowledge @ F xt
* One can extract a witness from accepting X »
proofs, i.e. the prover must “know” the e,
witness. cewing €€ - Crs; repeat poly
* Recall: Regular SNARG definition has no & X G times

soundness guarantees if a prover does NOt --rr-eree e

know a withess forx € L. Output w such that
R(x,w) =1

« SNARKSs “compose better” than SNARGs with Knowledge soundness: JExt, if & can

cryptographic objects create accepting proofs for x with
1/poly(n) probability, Ext”™ outputs a w.

 E.g. Somewhere extractable BARGs

Barrier to SNARKSs for NP

Barrier to SNARKSs for NP

 Black-box extraction is impossible for all of

NP from falsifiable assumptions! [CGKS23]

Barrier to SNARKSs for NP

 Black-box extraction is impossible for all of
NP from falsifiable assumptions! [CGKS23]

 Each proof is a “small leakage” on a

withess.

Barrier to SNARKSs for NP

 Black-box extraction is impossible for all of
NP from falsifiable assumptions! [CGKS23]

 Each proof is a “small leakage” on a

withess.

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

 Black-box extraction is impossible for all of @
NP from falsifiable assumptions! [CGKS23]

 Each proof is a “small leakage” on a

withess.

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23]

 Each proof is a “small leakage” on a

withess.

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

withess.

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

withess.

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

withess. «

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

witness. Wy -

* The prover might use a different
witness each time!

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = =TT
Crs
witness. W) - 1
T
* The prover might use a different : "

withess each timel

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = =TT
Crs
witness. W) - 1
T
* The prover might use a different : "

withess each timel

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = =TT
Crs
witness. W) - 1
T
* The prover might use a different : "
_ Rewind € ---ccmmmmm e
witness each time! crs,
W» b

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = =TT
Crs
witness. W) - 1
T
* The prover might use a different : "
_ Rewind € ---ccmmmmm e
witness each time! crs,
W» b
i)

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

: Crsq
witness. Wy)
. : A
* The prover might use a different "
) _ ReWIND € - - - e,
witness each time! crs,
W» <
i)
ReWINd €€ - - - oo
Crss
W3 <
73

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = T
Crs
witness. 2 - 1
T
* The prover might use a different : "
_ Rewind € -----ccmmme e
withess each time!
Crs»
W <
* Hard to piece together a single witness! ’ 7,
Can be formalised in terms of leakage W1 € e e
resilience. W) crs2
3

Barrier to SNARKSs for NP

Black-box extraction is impossible for all of XL Ext
NP from falsifiable assumptions! [CGKS23] X
« Each proof is a “small leakage” ona = T
Crs
witness. 2 - 1
T
* The prover might use a different : "
_ Rewind € -----ccmmme e
withess each time!
Crs»
W <
* Hard to piece together a single witness! ’ 7,
Can be formalised in terms of leakage W1 € e e
-y Crs
resilience. W,) 2
73

Impossibility doesn’t hold for UP! -

Barrier to SNARKSs for NP

Black-box extraction is impossible for all of @ Ext
NP from falsifiable assumptions! [CGKS23] X
e Each proofis a “small leakage” ona = =TT
CrsS
witness. Wi ‘ |
/4
* The prover might use a different 1)
) _ Rewind € ------cmmmmmm el
withness each time!
Crs»
W <
 Hard to piece together a single witness! 2 7,
Can be formalised in terms of leakage il @ oo e e e
. CrsS
resilience. W,) 2
73

Impossibility doesn’t hold for UP! g

Barrier to SNARKSs for NP

» Black-box extraction is impossible for all of % Ext
NP from falsifiable assumptions! [CGKS23] X

 Each proof is a “small leakage” on a

witness. Wy -

| . . W '
 Hard to piece together a single witness! T
Can be formalised in terms of leakage REWIN €€ o e e
resilience. 4 o
W3
3

* |Impossibility doesn’t hold for UP! g

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively
sound SNARG for UP can be used to construct an adaptively
sound SNARK for UP, while preserving zero-knowledge.

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively
sound SNARG for UP can be used to construct an adaptively
sound SNARK for UP, while preserving zero-knowledge.

e QOur transformation follows [CGKS23] who show a similar transformation from
SNARG for NP to SNARK for UP.

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively
sound SNARG for UP can be used to construct an adaptively
sound SNARK for UP, while preserving zero-knowledge.

e QOur transformation follows [CGKS23] who show a similar transformation from
SNARG for NP to SNARK for UP.

e \We also correct some issues In their work:

SNARG to SNARK for UP

Theorem 2: Assuming polynomial hardness of LWE, an adaptively
sound SNARG for UP can be used to construct an adaptively
sound SNARK for UP, while preserving zero-knowledge.

e QOur transformation follows [CGKS23] who show a similar transformation from
SNARG for NP to SNARK for UP.

e \We also correct some issues In their work:

* Their transformation (as is) is not zero-knowledge and requires adaptive
SNARGs for NP.

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness

P v P 7

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness

P v P 7

Common Reference
String (crs)

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness

P v P 7

Common Reference
String (crs)

xX*, s

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness

P 7 | PR reL g

Common Reference
String (crs)

xX*, s

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness
P v PE gL 4
Common Reference Common Reference

String (crs) String (crs)

xX*, s

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness : Non-Adaptive Soundness
P v PE gL 4
Common Reference Common Reference

String (crs) String (crs)

xX*®, " g ™

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness i Non-Adaptive Soundness
P 7 P el 4
Common Reference Common Reference
String (crs) String (crs)
xX*, ™ g ™

) €
(Informal) Gentry-Wichs Barrier: If a language takes time 2" to “decide”, there is no 2"
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

Adaptive vs. Non-Adaptive Soundness

Adaptive Soundness i Non-Adaptive Soundness
P* 7 P EL 7
Common Reference Common Reference
String (crs) String (crs)
% ok 5 %
AT . Intuition: How can you tell if i -

soundness was broken? Need to
decide if x* € L!

) €
(Informal) Gentry-Wichs Barrier: If a language takes time 2" to “decide”, there is no 2"
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

Falsifiable Assumptions

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[</ wins] > ¢ + negl(A).

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[</ wins] > ¢ + negl(A).

e/ 151

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[</ wins] > ¢ + negl(A).

e/ 151

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[</ wins] > ¢ + negl(A).

e/ 151

Outputs win
or lose

Falsifiable Assumptions

« An assumption is falsifiable if there exists an efficient challenger & that can
decide if an adversary & “won” the game.

« An assumption usually is associated with a parameter ¢ € [0,1] s.t. the
assumption is considered “broken” if Pr[</ wins] > ¢ + negl(A).

e/ 151

* E.g. Decision problems like DDH
and LWE have parameter ¢ = 1/2

* E.g. Search problems like OWF,
DLOG have parameter ¢ = 0

Outputs win
or lose

(Non-)Examples of Falsifiable Assumptions

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

e/ 151

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

iO(C,)

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

iO(C,)

b/

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

iO(C,)

b’ _ Acceptifb=1>b'

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

iO(C,)

b’ _ Acceptifb=1>b'
and C, = (,

(Non-)Examples of Falsifiable Assumptions

» Eg 1: Decisional LWE: (A, As +e¢) =. (A, b).

. “Eg” 2: Forall C; = G,, i0(Cy) =, iO(C,).

to/4 G
Cl’ C2

10(C) Takes up to 2

time to check

b’ ~ Acceptifb = b’/

and C, = (,

SNARG to SNARK
Transformation

SNARG to SNARK

SNARG for NP from iO Transformation
[SW14]

Gentry-Wichs Barrier

SNARGs from
Falsifiable
Assumptions

Gentry-Wichs Barrier

SNARGs from O
Falsifiable ()

Assumptions
9

Gentry-Wichs Barrier

What is the password?

2

SNARGs from O
Falsifiable ()

Assumptions
9

Gentry-Wichs Barrier

What is the password?

O

SNARGs from Q '
Falsifiable () |

Assumptions / (
9 .
,
VI 8

A

Exponential time reduction

Gentry-Wichs Barrier

What is the password?

O
7

SNARGs from Q
Falsifiable ()

Assumptions
9

2
"
¢
. 3
11 g
Yool
T

Exponential time reduction
=

/ You may proceed...

with caution

Gentry-Wichs Barrier

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

* One interpretation: One has to rely on sub-exponential hardness assumptions to obtain
adaptive soundness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

* One interpretation: One has to rely on sub-exponential hardness assumptions to obtain
adaptive soundness.

* Issue: It is not clear that one can maintain succinctness while doing this.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

* One interpretation: One has to rely on sub-exponential hardness assumptions to obtain
adaptive soundness.

Issue: It is not clear that one can maintain succinctness while doing this.

* Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain
succinctness.

Gentry-Wichs Barrier

(Informal) Gentry-Wichs Barrier: If a language takes time 2”(S to “decide”, there is no o
for € < 0 black-box reduction to falsifiable assumptions that shows adaptive soundness.

* One interpretation: One has to rely on sub-exponential hardness assumptions to obtain
adaptive soundness.

* Issue: It is not clear that one can maintain succinctness while doing this.

* Eg. Directly applying complexity-leveraging to the Sahai-Waters SNARG does not maintain
succinctness.

 No known constructions of adaptively sound SNARGs from falsifiable assumptions (prior to
Feb 2024%).

Our work

e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

Our work

e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

 Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can
be made adaptively sound in the designated verifier setting with no
additional assumptions.

Our work

e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

 Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can

be made adaptively sound in the designated verifier setting with no
additional assumptions.

e Corollary: Adaptively sound dv-zkSNARKSs for UP from either

Our work

e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

 Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can

be made adaptively sound in the designated verifier setting with no
additional assumptions.

e Corollary: Adaptively sound dv-zkSNARKSs for UP from either

e | WE and evasive LWE

Our work

e Theorem 3. We show that our dvSNARG for UP is adaptively sound.

 Theorem 4. Any “Sahai-Waters”-like sub-exponentially sound SNARG can
be made adaptively sound in the designated verifier setting with no
additional assumptions.

e Corollary: Adaptively sound dv-zkSNARKSs for UP from either
« LWE and evasive LWE

 LWE, subexponentially-secure 10, subexponentially-secure OWF

SNARG to SNARK

SNARG for NP from iO Transformation
[SW14]

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from
evasive LWE

SNARG for NP from iO
[SW14]

~ -

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

evasive LWE

SNARG for NP from iO

[SW14]

~ -

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

Transformation

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

Transformation

Adaptive dvSNARK for UP

Concurrent works

Concurrent works

 Beautiful concurrent works [WW24, WZ24] construct adaptively secure
publicly verifiable SNARGs for NP.

Concurrent works

 Beautiful concurrent works [WW24, WZ24] construct adaptively secure
publicly verifiable SNARGs for NP.

o [WW24] Sub-exponential IO + OWF, hardness of factoring/discrete log.

Concurrent works

 Beautiful concurrent works [WW24, WZ24] construct adaptively secure
publicly verifiable SNARGs for NP.

o [WW24] Sub-exponential IO + OWF, hardness of factoring/discrete log.

o [WZ24] Sub-exponential iO + OWF, LWE.

Concurrent works

 Beautiful concurrent works [WW24, WZ24] construct adaptively secure
publicly verifiable SNARGs for NP.

o [WW24] Sub-exponential IO + OWF, hardness of factoring/discrete log.
o [WZ24] Sub-exponential iO + OWF, LWE.

» Corollary: Publicly verifiable SNARKSs for UP using our/[CGKS23] compiler.

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

Transformation

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

Adaptive SNARG for NP
from iO + X [WW24, WZ24]

Transformation

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

4

Adaptive SNARG for NP
from iO + X [WW24, WZ24]

Transformation

Adaptive dvSNARK for UP

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

4

Adaptive SNARG for NP
from iO + X [WW24, WZ24]

Transformation

Adaptive dvSNARK for UP

SNARG to SNARK

Transformation

>

“Sahai-Waters”-like SNARGs

‘—_-----— --
L d

dvSNARG for UP from

,Adaptive dvSNARG for UP

evasive LWE

SNARG for NP from iO

from evasive LWE

SNARG to SNARK

_Adaptive dvSNARG for NP

[SW14]

~ -

from iO

4

Adaptive SNARG for NP
from iO + X [WW24, WZ24]

Transformation

Adaptive dvSNARK for UP

SNARG to SNARK

Transformation

> Adaptive SNARK for UP

TL;DR

In this work, we
1. Build a designated-verifier SNARG for UP from LWE and evasive LWE
2. Show our dvSNARG, and any “Sahai-Waters”-like dvSNARG can be made adaptively sound.
 Adaptively sound SNARGs from falsifiable assumptions ([JLS20] iO + OWF)!
3. Transformation from SNARG for UP to SNARK for UP.
* Corollary: Adaptively sound dv-SNARK for UP from falsifiable assumptions.

All of the above constructions/transformations also satisfy/preserve zero-knowledge!

Witness PRF [Zhandry 16]

Witness PRF [Zhandry 16]

 We view the “Sahai-Waters” SNARG in the designated verifier setting as a

special case of withess PRF.

Witness PRF [Zhandry 16]

 We view the “Sahai-Waters” SNARG in the designated verifier setting as a

special case of withess PRF.

« Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).

Witness PRF [Zhandry 16]

 We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

« Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
» (pk, sk) <« wWPRF .Gen(R).

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wPRF . Gen(R).

Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wPRF . Gen(R).
Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is Hybrid between witness encryption)

and constrained PRFs
(pk, sk) < wWPRF .Gen(R).

Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wPRF . Gen(R).
Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wWPRF . Gen(R).
Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.

Witness PRF [Zhandry 16]

We view the “Sahai-Waters” SNARG in the designated verifier setting as a
special case of withess PRF.

Fix an NP relation R. Witness PRF is a triple of algorithms (Gen, Eval, F).
(pk, sk) < wWPRF . Gen(R).
Correctness: If R(x, w) = 1, Eval, (x, w) = F(x).

Security: If x & L, (pk, F (x)) =. (pk, r) where r is a random string.

Sahai-Waters: Non-adaptive witness PRF for NP from iO + OWF.
Our UP SNARG: Adaptive witness PRF for UP from evasive LWE.

Sahai-Waters Witness PRF

Sahai-Waters Witness PRF

* Public key: Let PRF be a puncturable

PRF. Key is the obfuscation of this:

Sahai-Waters Withess PRF

* Public key: Let PRF be a puncturable
PRF. Key is the obfuscation of this:

Prove,(x, w) :
- f R(x,w) = 1, output PRF;(x)
- Else, output L

Sahai-Waters Withess PRF

* Public key: Let PRF be a puncturable
PRF. Key is the obfuscation of this:

Prove,(x, w) :
- f R(x,w) = 1, output PRF;(x)
- Else, output L

» Secret key: PRF Key k.

Sahai-Waters Withess PRF

» Public key: Let PRF be a puncturable ¢ Correctness: If R(x, w) = 1, then
PRF. Key is the obfuscation of this: obfuscation outputs PRF;(x).

Prove,(x, w) :
- f R(x,w) = 1, output PRF;(x)
- Else, output L

» Secret key: PRF Key k.

Sahai-Waters Withess PRF

» Public key: Let PRF be a puncturable ¢ Correctness: If R(x, w) = 1, then
PRF. Key is the obfuscation of this: obfuscation outputs PRF;(x).

« Non-adaptive security: If x™ & L,
Ptonezlé(&va)) = 1, output PRF,(x) replace k in obfuscation with
- Else, output 1 punctured key k{x*}.

» Secret key: PRF Key k.

Sahai-Waters Withess PRF

» Public key: Let PRF be a puncturable ¢ Correctness: If R(x, w) = 1, then
PRF. Key is the obfuscation of this: obfuscation outputs PRF;(x).

« Non-adaptive security: If x™ & L,
Ptonezlé(&va)) = 1, output PRF,(x) replace k in obfuscation with
- Else, output 1 punctured key k{x*}.

» Secret key: PRF Key k.

Sahai-Waters Withess PRF

» Public key: Let PRF be a puncturable ¢ Correctness: If R(x, w) = 1, then
PRF. Key is the obfuscation of this: obfuscation outputs PRF;(x).

« Non-adaptive security: If x™ & L,
Ptonezlé(&va)) = 1, output PRF,(x) replace k in obfuscation with
- Else, output 1 punctured key k{x*}.

--- k, PRF.(x)) ~ k', r
 Secret key: PRF Key k. (p (X)) =, (pK’, 7)

Witness PRF to SNARG Template

Witness PRF for R
» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,
Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

Witness PRF to SNARG Template

P

7

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

Witness PRF to SNARG Template

P

crs = pk

7

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

Witness PRF to SNARG Template

P

crs = pk

7

State = skj>

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

P

n = Evaly (x, w)

crs = pk

7

State = skj>

Witness PRF to SNARG Template

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

P

n = Evaly (x, w)

crs = pk

7

State = skj>

Witness PRF to SNARG Template

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

P

n = Evaly (x, w)

crs = pk

7

State = skj>

. Accept if 1 = F (x)

Witness PRF to SNARG Template

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

P

n = Evaly (x, w)

crs = pk

7

State = skj>

. Accept if 1 = F (x)

Witness PRF to SNARG Template

Witness PRF for R

» (pk, sk) <« wWPRF .Gen(R).

« Correctness: If R(x,w) = 1,

Eval, (x, w) = F (x).

 Security: If x & L, pk hides the

value of F (x), i.e. F(x) looks
random.

9P crs = pk /4

State = skcj>

n = Evaly (x, w)

Claim: For x™ & L,
(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

. Accept if 1 = F (x)

Witness PRF to SNARG Template

Witness PRF for R
(pk, sk) < wPRF . Gen(R).

Correctness: If R(x, w) = 1,
Eval, (x, w) = F (x).

Security: If x &€ L, pk hides the

value of F (x), i.e. F(x) looks
random.

Complexity Leveraging the Witness PRF

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

[x|+4)

 Take a non-adaptive witness PRF construction with 2~ security.

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

—(|x[+4)

« Take a non-adaptive withess PRF construction with 2 security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

—(|x[+4)

« Take a non-adaptive withess PRF construction with 2 security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Non-adaptive
Challenger %

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

—(|x[+4)

« Take a non-adaptive withess PRF construction with 2 security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Non-adaptive Non-adaptive
Adversary t% Challenger %

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random
x* & L

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary :Q{ Adversary t% Challenger %
Choose random e
x* ¢ L >

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary :Q{ Adversary t% Challenger %
Choose random e
x* ¢ L >

Yo = Fsk(X*)ayl =T

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary :Q{ Adversary t% Challenger %
Choose random e
x* ¢ L >

PK, Y, Yo = Fg(x™),y; =1

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary :Q{ Adversary t% Challenger %
Choose random e
x* ¢ L >

pk Pk, Y Yo = Fylx®),y; =7

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random e
x* ¢ L >
pk Pk, Y Yo = Fylx®),y; =7

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random e
x* ¢ L >
pk - pk, yb y() p— Fsk(x*),yl = 7
< x,

» Ifx" = x*, you get
an advantage, else,
flip a coin

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

[x|+4)

 Take a non-adaptive witness PRF construction with 2~ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random e
x* ¢ L >
pk - pk, yb y() p— Fsk(x*),yl = 7
< x,

» Ifx" = x*, you get
Vb an advantage, else,
flip a coin

Complexity Leveraging the Witness PRF

 We argued that the resulting SNARG is adaptively sound if the withess PRF is
adaptively sound.

(Jx[+2)

« Take a non-adaptive witness PRF construction with 2™ security.

 Complexity leverage the withess PRF to obtain an adaptive witness PRF which is
polynomially secure!

Adaptive / Non-adaptive Non-adaptive
Adversary QQ{ Adversary tQ{ Challenger %
Choose random e
x* ¢ L >
pk - pk, yb y() p— Fsk(x*),yl = 7
< x,

» Ifx" = x*, you get

< Vb an advantage, else, Advantage: Adv(&[’)/2|x|
flip a coin '

Witness PRF to SNARG Template

9P crs = pk v/

State = skT

X, 7T .
n = Evaly (x, w) . Accept if 7 = F (x)

Claim: For x™ & L,
(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

Witness PRF to SNARG Template

9P crs = pk /4

« The length of 7 is depends only on
security parameter of the SNARG!

State = skcj>

n = Evaly (x, w) ’ . Acceptif 7 = F (x)

Claim: For x™ & L,
(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

Witness PRF to SNARG Template

9P crs = pk /4

« The length of 7 is depends only on
security parameter of the SNARG!

State = Skc]'> Can decouple the wPRF security
indistinguishability parameter
from proof search size.

n = Eval,(x, w) vt Accept if 7 = F, (x) P

Claim: For x* & L,

(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

Witness PRF to SNARG Template

9P crs = pk /4

« The length of 7 is depends only on
security parameter of the SNARG!

State = Skc]'> Can decouple the wPRF security
indistinguishability parameter
from proof search size.

n = Eval,(x, w) vt Accept if 7 = F, (x) P

« We can choose proof size ~ A for

_ 2~* soundness!
Claim: For x* & L,

(crs, F (x™)) = (crs, r).
Moreover, this transformation
preserves adaptiveness.

TL;DR

In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

TL;DR

Build a withess PRF for UP from

. evasive LWE
In this work, we

1. Build a designated-verifier SNARG for UP from LWE and evasive LWE

Withess PRF from Evasive LWE

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz.

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2

This is a PRF if R is a UP relation. If not UP, then this might not hold!

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'
F Kl(x) if R(x,w) =1

%4 , W) =

Kl’K2(x W) GKz(x, w) otherwise

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'

Fy (x) if R(x,w) =1
14 , W) =
Kl,Kz(x w) Gy (x,w) otherwise
2

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)

» Step 3: Construct wPRF: pk = O(W), sk = K. The obfuscation guarantee, for x* & L:

Withess PRF from Evasive LWE

 Step 1: “Average-case obfuscation” for functions with pseudorandom outputs from
evasive LWE.

» Step 2: Consider the following function constructed from PRFs £x and GKz'
F Kl(x) if R(x,w) =1

%4 , W) =

Kl’K2(x W) GKz(x, w) otherwise

This is a PRF if R is a UP relation. If not UP, then this might not hold!

- If x has two witness w, w,, then Wy ¢ (x, w)) = Wi ¢ (x,w,) (i.e. zeroizing regime!)

» Step 3: Construct wPRF: pk = O(W), sk = K. The obfuscation guarantee, for x* & L:
(pk, Fie (%)) =, (pk, 7)

Summary

Summary

* \We build adaptively sound designated-verifier SNARGs for:

Summary

* \We build adaptively sound designated-verifier SNARGs for:

e UP from LWE and evasive LWE

Summary

* \We build adaptively sound designated-verifier SNARGs for:

e UP from LWE and evasive LWE

NP from sub-exponential iO + OWF

Summary

* \We build adaptively sound designated-verifier SNARGs for:

« UP from LWE and evasive LWE
NP from sub-exponential iO + OWF

» We show that adaptively sound SNARGs for UP can be transformed into
SNARKSs for UP assuming polynomially secure LWE.

Summary

 \We build adaptively sound designated-verifier SNARGs for:
« UP from LWE and evasive LWE
NP from sub-exponential iO + OWF

» We show that adaptively sound SNARGs for UP can be transformed into
SNARKSs for UP assuming polynomially secure LWE.

 We can build SNARKSs from falsifiable assumptions!

Open Questions

Open Questions

 Can we construct withess PRFs directly from LWE?

Open Questions

 Can we construct withess PRFs directly from LWE?

 Can we prove evasive LWE from LWE?

Open Questions

 Can we construct withess PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?

Open Questions

 Can we construct withess PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?

 Can we transform our SNARG into a publicly verifiable SNARG?

Open Questions

 Can we construct withess PRFs directly from LWE?

 Can we prove evasive LWE from LWE?

« What else can we prove from evasive LWE that we can build from
obfuscation?

 Can we transform our SNARG into a publicly verifiable SNARG?

 Have to be very careful about zeroizing attacks!

Open Questions

Can we construct witness PRFs directly from LWE?
 Can we prove evasive LWE from LWE?

What else can we prove from evasive LWE that we can build from
obfuscation?

Can we transform our SNARG into a publicly verifiable SNARG?
 Have to be very careful about zeroizing attacks!

Can we get a SNARG with a smaller CRS? Can we get a common random/
transparent string”?

Thank you very much for
your attention!

Bonus Slides

o-PRF Obfuscation

o-PRF Obfuscation

» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

o-PRF Obfuscation

» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

{u (HMiaxi) V} , dUX = {%}XE{O,l}k’ dUX

x€{0,1}%

o-PRF Obfuscation

» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

{u (HMiaxi) V} , dUX = {%}XE{O,l}k’ dUX

x€{0,1}%

(i.e. the function is a “very secure PRF”
when noise is added)

o-PRF Obfuscation

» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

{u (HMiaxi) V} , dUX = {%}XE{O,l}k’ dUX

x€{0,1}%

(i.e. the function is a “very secure PRF”
when noise is added)

» Then, our obfuscation guarantees that (O(P), aux) = (<, aux).

o-PRF Obfuscation

» Consider a matrix branching program given by
P = {u, {M,,}icx1.0et0.11» V1- Then, suppose that:

{u (HMiaxi) V} , dUX = {%}XE{O,l}k’ dUX

x€{0,1}%

(i.e. the function is a “very secure PRF”
when noise is added)

» Then, our obfuscation guarantees that (O(P), aux) = (<, aux).

(I.e. the obfuscation leaks nothing more
than the outputs)

Simplified Obfuscation Construction

Simplified Obfuscation Construction

» Step 1: Consider a read-once branching program PRF £ : {0,1 Ve, 7Y/ given
byll, {Mi,b}iE[h],bE{O,l}’ A\ SatiSfying:

Simplified Obfuscation Construction

» Step 1: Consider a read-once branching program PRF £ : {0,1 Ve, 7Y/ given
byll, {Mi,b}iE[h],bE{O,l}’ A\ SatiSfying:

h
F(x)=u (HM) v
=1

Simplified Obfuscation Construction

» Step 1: Consider a read-once branching program PRF £ : {0,1 W' — Y given
byu, {Mi,b}ié[h],bE{O,l}a V Satisfying: Take the subset product!

h /
F(x)=u (HMW) \Y
=1

Simplified Obfuscation Construction

. Step 1: Consider a read-once branching program PRF F, : {0,1}" — % given
byu, {Mi,b}iE[h],bE{O,l}a V Satisfying: Take the subset product!

e

h
=1

Simplified Obfuscation Construction

» Step 1: Consider a read-once branching program PRF £ : {0,1 W' — Y given
byu, {Mi,b}ié[h],bE{O,l}a V Satisfying: Take the subset product!

h /
F(x)=u (HM) v
=1

o Step 2: Perform GGH15 [Garg-Gentry-Halevi] encoding of the branching
program.

GGH15 Encodings

M3,O

M3,1

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)

GGH15 Encodings

» Sample S, , < ¥ (i.e.

small entries)
MI,O MZ,O MB,O
o . . .
o . . .

GGH15 Encodings

« Sample S —y

(ul|1)
Nl - "

€XC (i.e.

GGH15 Encodings

« Sample S —y

(uf|1)
aE In e g

€XC (i.e.

GGH15 Encodings

« Sample S —y

(ul|1)
Nl - "

€XC (i.e.

GGH15 Encodings

Sample S;, < < (i.e.
small entries)

» Sample A, with a
trapdoor

GGH15 Encodings

Sample S;, < < (i.e.
small entries)

» Sample A, with a
trapdoor

GGH15 Encodings

Sample S;, < < (i.e.
small entries)

» Sample A, with a
trapdoor

Set

GGH15 Encodings

Sample S;, < < (i.e.
small entries)

» Sample A, with a
trapdoor

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)

» Sample A, with a
trapdoor

Set
S = All2? = 4 evaluations

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)

» Sample A, with a
trapdoor

Set
S = All2? = 4 evaluations

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)
» Sample A, with a

trapdoor
Set
S = Al 2% = 4 evaluations
P = Two matrices

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)
» Sample A, with a

trapdoor
Set
S = Al 2% = 4 evaluations
P = Two matrices
Then

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)
» Sample A, with a

trapdoor
Set
S = Al 2% = 4 evaluations
P = Two matrices
Then

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)
» Sample A, with a

trapdoor
Set
S = Al 2% = 4 evaluations
P = Two matrices
Then

SP = {F(X) }xej01pp ® %

GGH15 Encodings

» Sample S, , < ¥ (i.e.
small entries)

» Sample A, with a
trapdoor

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then

SP = {F(X) }xej01pp ® %
Because F), is a PRF

GGH15 Encodings

« Sample §;;, < ¥ (i.e.
small entries)
» Sample A, with a trapdoor

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

GGH15 Encodings

All possible evaluatﬂ products are of the form:
SB — {UMI,X1M2,X2A2 + 1S1,X1S2,x2&}x1,x2€{0,1}

« Sample §;;, < ¥ (i.e.
small entries)
» Sample A, with a trapdoor

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

GGH15 Encodings

All possible evaluatﬂ products are of the form:
SB — {uMl,x1M2,x2A2 + 1S1,x1S2,x2&}x1,x2€{0,1}

pseudorandom (with noise) by LWE!

« Sample §;;, < ¥ (i.e.
small entries)
» Sample A, with a trapdoor

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

GGH15 Encodings

All possible evaluatﬂ products are of the form:
SB — {uMl,leZ,x2A2 + lSl,XISZ,Xzﬁ}Xl,Xze{O,l}

pseudorandom (with noise) by LWE!

« Sample §;;, < ¥ (i.e.
small entries)
» Sample A, with a trapdoor

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

GH15 Encodlngs

. Sample §; ;, < x
small entries)
» Sample A, with a trapdoor

CXC (

Set

S = Al 2? = 4 evaluations
P = Two matrices

Then:

SP = {F(X) }xef0,1pp ® %
Because £ is a PRF

All possible evaluatﬂ products are of the form: P

. {uMl,MMz’szz + ISLXISZ,XZ&}XD%E{OJ} _
pseudorandom (with noise) by LWE!

GGH15 Encodings

* Repeatedly apply evasive LWE!
» Shrunk the size from 2" evaluated products to size to 2/ matrices.

GGH15 Encodings

* Repeatedly apply evasive LWE!
» Shrunk the size from 2" evaluated products to size to 2/ matrices.

