
MacORAMa:
Optimal Oblivious RAM with Integrity

Surya Mathialagan Neekon Vafa
MIT MIT

To appear at CRYPTO 2023

Remote RAM Computation

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

User

Server

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

User

Server

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Remote RAM Computation
• User wants to perform RAM

computation, but doesn’t
have enough local space.

• Solution: Use remote RAM
server.

• How can the user ensure
privacy of its computation
against a curious server?

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

User

Server

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)
𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

User

Server

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)
𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

User

Server

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)
𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

• RAM addresses in accesses
can reveal private information!

Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

• RAM addresses in accesses
can reveal private information!

Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

• RAM addresses in accesses
can reveal private information!

Server

Brain

Data

Kidney
Data

Heart
Data

Scientist

Remote RAM Computation
• One idea to ensure privacy:

Encrypt the data (private key)

• Problem: Encryption is
insufficient (access patterns
reveal private information!)

• Example: Medical study

• RAM addresses in accesses
can reveal private information!

Server

Brain

Data

Kidney
Data

Heart
Data

Many patients
have heart issues!

Scientist

Oblivious RAM (ORAM)

User

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

Oblivious RAM (ORAM)

User
ORAM

Client

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

Oblivious RAM (ORAM)

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Oblivious RAM (ORAM)

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Oblivious RAM (ORAM)

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Oblivious RAM (ORAM)

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Oblivious RAM (ORAM)

• Correctness: For any user queries, the ORAM responses to the user are correct.

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Oblivious RAM (ORAM)

• Correctness: For any user queries, the ORAM responses to the user are correct.

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Oblivious RAM (ORAM)

• Correctness: For any user queries, the ORAM responses to the user are correct.

• Obliviousness: Compiled queries leak nothing about the user queries (except for the number
of queries):

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Oblivious RAM (ORAM)

• Correctness: For any user queries, the ORAM responses to the user are correct.

• Obliviousness: Compiled queries leak nothing about the user queries (except for the number
of queries):

User
𝗊𝗎𝖾𝗋𝗒

ORAM

Client

̂𝗊𝗎𝖾𝗋𝗒

response

Server

“ ”{ ̂𝗊𝗎𝖾𝗋𝗒} ≈𝖼𝗈𝗆𝗉 𝖲𝗂𝗆 (1 ⃗𝗊𝗎𝖾𝗋𝗒)

[Goldreich ’87,
Ostrovsky ’90,
Goldreich-
Ostrovsky ‘96]

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
Server is a passive
storage which does
no additional work.

Application: File Storage Platforms

User

Server

👩

Application: File Storage Platforms

User

Server

👩
𝗊𝗎𝖾𝗋𝗒

ORAM

response

💻

Application: File Storage Platforms

User

Server

👩

With ORAM, storage platform can’t learn anything.

𝗊𝗎𝖾𝗋𝗒
ORAM

response

💻

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

Application: Secure Hardware Enclaves

User Intel SGX

Untrusted Server

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX
ORAM

• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Real World: Signal very recently implemented
ORAM for private contact discovery!

ORAM

ORAM vs. PIR

ORAM vs. PIR
• Private Information Retrieval (PIR) is similar to ORAM but has crucial

differences:

ORAM vs. PIR
• Private Information Retrieval (PIR) is similar to ORAM but has crucial

differences:

• In PIR, the database is typically public.

ORAM vs. PIR
• Private Information Retrieval (PIR) is similar to ORAM but has crucial

differences:

• In PIR, the database is typically public.

• Unlike ORAM, PIR allows many clients to access database.

ORAM vs. PIR
• Private Information Retrieval (PIR) is similar to ORAM but has crucial

differences:

• In PIR, the database is typically public.

• Unlike ORAM, PIR allows many clients to access database.

• PIR (usually) not stateful, and is typically read-only (not updatable).

ORAM Efficiency

ORAM Efficiency
Two main complexity measures for ORAMs:

ORAM Efficiency
Two main complexity measures for ORAMs:

1. Local Space: Amount of space the ORAM can store locally (trusted &
private).

ORAM Efficiency
Two main complexity measures for ORAMs:

1. Local Space: Amount of space the ORAM can store locally (trusted &
private).

• For a RAM with entries, space is trivial (can store the full RAM itself).N N

ORAM Efficiency
Two main complexity measures for ORAMs:

1. Local Space: Amount of space the ORAM can store locally (trusted &
private).

• For a RAM with entries, space is trivial (can store the full RAM itself).N N

• For the rest of the talk, think space words (of size).O(1) ≈ log(N)

ORAM Efficiency

User
𝗊𝗎𝖾𝗋𝗒

ORAM
̂𝗊𝗎𝖾𝗋𝗒

response

Server

Local Space

ORAM Efficiency

User
𝗊𝗎𝖾𝗋𝗒

ORAM
̂𝗊𝗎𝖾𝗋𝗒

response

Server

2. Overhead: Number of queries made to the server per user query.

ORAM Efficiency

User
𝗊𝗎𝖾𝗋𝗒

ORAM
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2. Overhead: Number of queries made to the server per user query.

ORAM Efficiency

User
𝗊𝗎𝖾𝗋𝗒

ORAM
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2. Overhead: Number of queries made to the server per user query.

• For a RAM with entries, overhead is trivial (always do a linear scan).N N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87] N log N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

N log N

log3 N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

N log N

log3 N

log2 N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

N log N

log3 N

log2 N

log N log log N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

N log N

log3 N

log2 N

log N log log N

log N

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, Larsen-Nielsen ’18, Komargodski-Lin ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, Larsen-Nielsen ’18, Komargodski-Lin ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)
Optimal!

Power of the Adversary
• But up until now, we have assumed a passive, honest-but-curious RAM

server that can try to learn something about the queries.

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

Server

ORAM

Power of the Adversary
• But up until now, we have assumed a passive, honest-but-curious RAM

server that can try to learn something about the queries.

• In reality, an adversary can do more! What about an active, malicious
adversary that can modify the contents in the RAM?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

Server

ORAM

Power of the Adversary
• But up until now, we have assumed a passive, honest-but-curious RAM

server that can try to learn something about the queries.

• In reality, an adversary can do more! What about an active, malicious
adversary that can modify the contents in the RAM?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

Server

ORAM

Power of the Adversary
• But up until now, we have assumed a passive, honest-but-curious RAM

server that can try to learn something about the queries.

• In reality, an adversary can do more! What about an active, malicious
adversary that can modify the contents in the RAM?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

Server

ORAM

Malicious Security
• A malicious server breaks correctness

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

ServerServer

ORAM

Malicious Security
• A malicious server breaks correctness

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

ServerServer

ORAM

Malicious Security
• A malicious server breaks correctness and also obliviousness.

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

ServerServer

ORAM

Malicious Security
• A malicious server breaks correctness

• Why? After a corrupted server response, a standard ORAM has no
obliviousness guarantee anymore. (This will be a big issue!)

and also obliviousness.

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

ServerServer

ORAM

Malicious Security
• A malicious server breaks correctness

• Why? After a corrupted server response, a standard ORAM has no
obliviousness guarantee anymore. (This will be a big issue!)

and also obliviousness.

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

response

ServerServer

ORAM

Applications of Malicious Attacks

• For file storage platforms (e.g., Dropbox, Google Drive), what if adversary
breaks in and tampers database?

Applications of Malicious Attacks

• For file storage platforms (e.g., Dropbox, Google Drive), what if adversary
breaks in and tampers database?

• No more privacy guarantees!

Applications of Malicious Attacks

• For file storage platforms (e.g., Dropbox, Google Drive), what if adversary
breaks in and tampers database?

• No more privacy guarantees!

• What if adversary tampers with untrusted memory outside the secure
enclave?

Applications of Malicious Attacks

• For file storage platforms (e.g., Dropbox, Google Drive), what if adversary
breaks in and tampers database?

• No more privacy guarantees!

• What if adversary tampers with untrusted memory outside the secure
enclave?

• No more privacy guarantees!

Applications of Malicious Attacks

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, LN ’18, KL ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, LN ’18, KL ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

Yes

Yes

Yes

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, LN ’18, KL ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

Yes

Yes

Yes

No

No

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, LN ’18, KL ’21]

Attacks!

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

Yes

Yes

Yes

No

No

ORAM History (Malicious)
RAM of size , word size , local space , assuming OWFN ω(log N) O(1)

Work Overhead Malicious?

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, LN ’18, KL ’21]

Attacks!

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

Yes

Yes

Yes

No

No

Any stronger?

Optimal Maliciously Secure ORAM

Optimal Maliciously Secure ORAM
Question:  

Is there a maliciously secure ORAM with overhead?O(log N)

Optimal Maliciously Secure ORAM
Question:  

Is there a maliciously secure ORAM with overhead?O(log N)

Theorem [M.-Vafa ’23]: Yes!

Optimal Maliciously Secure ORAM
Question:  

Is there a maliciously secure ORAM with overhead?O(log N)

Theorem [M.-Vafa ’23]: Yes!

Assuming one-way functions, we construct MacORAMa, a
maliciously secure ORAM with overhead and
local space*.

O(log N) O(1)

Optimal Maliciously Secure ORAM?
Theorem [M.-Vafa ’23]: Assuming one-way functions, there is
a maliciously secure ORAM with overhead and

 word local space*.
O(log N)

O(1)

• As before, overhead is optimal – malicious security for free!O(log N)

Optimal Maliciously Secure ORAM?
Theorem [M.-Vafa ’23]: Assuming one-way functions, there is
a maliciously secure ORAM with overhead and

 word local space*.
O(log N)

O(1)

• As before, overhead is optimal – malicious security for free!O(log N)

• Maliciously secure ORAM still in passive storage model! No extra work for honest server.

Optimal Maliciously Secure ORAM?
Theorem [M.-Vafa ’23]: Assuming one-way functions, there is
a maliciously secure ORAM with overhead and

 word local space*.
O(log N)

O(1)

• As before, overhead is optimal – malicious security for free!O(log N)

• Maliciously secure ORAM still in passive storage model! No extra work for honest server.

• OWFs are also necessary for maliciously secure ORAM. [Naor, Rothblum ’05]

Optimal Maliciously Secure ORAM?
Theorem [M.-Vafa ’23]: Assuming one-way functions, there is
a maliciously secure ORAM with overhead and

 word local space*.
O(log N)

O(1)

• As before, overhead is optimal – malicious security for free!O(log N)

• Maliciously secure ORAM still in passive storage model! No extra work for honest server.

• OWFs are also necessary for maliciously secure ORAM.

• In private random oracle model, we get statistical malicious security against unbounded
adversaries.

[Naor, Rothblum ’05]

ORAM History (Malicious)
RAM of size , word size , local space N ω(log N) O(1)

Work Overhead Malicious?
[Goldreich ’87] Yes

[Ostrovsky ’90, Goldreich-Ostrovsky ’96] Yes

Path ORAM [SvDSCFRYD ’12] Yes

PanORAMa [Patel-Persiano-Raykova-Yeo ’18] No

OptORAMa [AKLNPS ‘20, AKLS ’21] No

Lower Bound: [Goldreich ’87, LN ’18, KL ’21] Any stronger?

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)

ORAM History (Malicious)
RAM of size , word size , local space N ω(log N) O(1)

MacORAMa [M.-Vafa ’22] Yes

Work Overhead Malicious?
[Goldreich ’87] Yes

[Ostrovsky ’90, Goldreich-Ostrovsky ’96] Yes

Path ORAM [SvDSCFRYD ’12] Yes

PanORAMa [Patel-Persiano-Raykova-Yeo ’18] No

OptORAMa [AKLNPS ‘20, AKLS ’21] No

Lower Bound: [Goldreich ’87, LN ’18, KL ’21] Any stronger?

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)
log N

Ω (log N)

Starting Point

We start with OptORAMa [Asharov, Komargodski,
Lin, Nayak, Peserico, Shi] - a honest-but-curious

ORAM with optimal overhead.O(log N)

Background: Hierarchical ORAM

Background: Hierarchical ORAM
• Many ORAM constructions, starting with [Ostrovsky ’90, Goldreich-Ostrovsky

’96] and including OptORAMa [AKLNPS ’21], follow the hierarchical paradigm.

Background: Hierarchical ORAM
• Many ORAM constructions, starting with [Ostrovsky ’90, Goldreich-Ostrovsky

’96] and including OptORAMa [AKLNPS ’21], follow the hierarchical paradigm.

• For each , there’s an oblivious hash table of size .i ∈ [log2(N)] 𝖧i 2i

Background: Hierarchical ORAM
• Many ORAM constructions, starting with [Ostrovsky ’90, Goldreich-Ostrovsky

’96] and including OptORAMa [AKLNPS ’21], follow the hierarchical paradigm.

• For each , there’s an oblivious hash table of size .i ∈ [log2(N)] 𝖧i 2i

• Lookup Phase: Given a query to , lookup in until found.
Lookup dummy elements for the subsequent tables, and write updated
back to .

𝖺𝖽𝖽𝗋 𝖺𝖽𝖽𝗋 𝖧1, 𝖧2, …
𝖺𝖽𝖽𝗋

𝖧1

Background: Hierarchical ORAM
• Many ORAM constructions, starting with [Ostrovsky ’90, Goldreich-Ostrovsky

’96] and including OptORAMa [AKLNPS ’21], follow the hierarchical paradigm.

• For each , there’s an oblivious hash table of size .i ∈ [log2(N)] 𝖧i 2i

• Lookup Phase: Given a query to , lookup in until found.
Lookup dummy elements for the subsequent tables, and write updated
back to .

𝖺𝖽𝖽𝗋 𝖺𝖽𝖽𝗋 𝖧1, 𝖧2, …
𝖺𝖽𝖽𝗋

𝖧1

• Rebuild Phase: Every queries, obliviously merge
into new , removing duplicate addresses by keeping the version from the
smaller .

2i 𝖧1 → 𝖧2 → ⋯ → 𝖧i+1
𝖧i+1

𝖧j

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Query to :𝖺𝖽𝖽𝗋

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Query to :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Query to :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺2

Query to :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺2

Query to :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Perform dummy lookup in 𝖧3

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺2

Query to :𝖺𝖽𝖽𝗋

…

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Perform dummy lookup in 𝖧3

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺2

Query to :𝖺𝖽𝖽𝗋

…

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Perform dummy lookup in 𝖧3 Perform dummy lookup in 𝖧log N

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

Write back to 𝖧1

Query to :𝖺𝖽𝖽𝗋

Hierarchical Construction: Lookup
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

Write back to 𝖧1

• If a write, let be the new value.

• If a read, let and return .

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺′ := 𝖽𝖺𝗍𝖺2 𝖽𝖺𝗍𝖺2

Query to :𝖺𝖽𝖽𝗋

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

(− , −) (− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

• Every queries, merge .4 𝖧1 → 𝖧2 → 𝖧3

(− , −) (− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

• Every queries, merge .4 𝖧1 → 𝖧2 → 𝖧3

• Every queries, merge .8 𝖧1 → 𝖧2 → 𝖧3 → 𝖧4

• …

(− , −) (− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺2)(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

• Every queries, merge .4 𝖧1 → 𝖧2 → 𝖧3

• Every queries, merge .8 𝖧1 → 𝖧2 → 𝖧3 → 𝖧4

• …

(− , −) (− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

• Every queries, merge .4 𝖧1 → 𝖧2 → 𝖧3

• Every queries, merge .8 𝖧1 → 𝖧2 → 𝖧3 → 𝖧4

• …

(− , −)

(− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Hierarchical Construction: Rebuild

Rebuild
Phase

𝖧1 𝖧2 𝖧3 𝖧log N

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺′)

• Every queries, merge .4 𝖧1 → 𝖧2 → 𝖧3

• Every queries, merge .8 𝖧1 → 𝖧2 → 𝖧3 → 𝖧4

• …

(− , −)

(− , −)

• Every queries, merge , removing
duplicates by keeping the version from .

2 𝖧1 → 𝖧2
𝖧1

Overview of our techniques

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 , σ)

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 , σ)

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 , σ)̂𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

• What about Message Authentication Codes (MACs)?

• MACs force the server to only send back values it has already seen.

Technique #1: MACs

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 , σ)̂𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)

̂𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒
(̂𝖽𝖺𝗍𝖺 , σ)

Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽, σ𝗈𝗅𝖽)̂𝖽𝖺𝗍𝖺

Abort if 𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒 (σ, (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)) = 0

𝗄𝖾𝗒

Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽, σ𝗈𝗅𝖽)

𝗄𝖾𝗒

̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽

Abort if , ,𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒(σ𝗈𝗅𝖽 (̂𝖺𝖽𝖽𝗋 ̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽)) = 0

Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.

• Affects correctness and obliviousness!

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽, σ𝗈𝗅𝖽)

𝗄𝖾𝗒

̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽

Abort if , ,𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒(σ𝗈𝗅𝖽 (̂𝖺𝖽𝖽𝗋 ̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽)) = 0

Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.

• Affects correctness and obliviousness!

ORAM

Server

MAC
𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺) 𝗐𝗋𝗂𝗍𝖾(̂𝖺𝖽𝖽𝗋 , (̂𝖽𝖺𝗍𝖺 , σ))

σ := 𝖬𝖠𝖢𝗄𝖾𝗒 (̂𝖺𝖽𝖽𝗋 , ̂𝖽𝖺𝗍𝖺)

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋) 𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋)
(̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽, σ𝗈𝗅𝖽)

𝗄𝖾𝗒

̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽

??

Abort if , ,𝖵𝖾𝗋𝗂𝖿𝗒𝗄𝖾𝗒(σ𝗈𝗅𝖽 (̂𝖺𝖽𝖽𝗋 ̂𝖽𝖺𝗍𝖺 𝗈𝗅𝖽)) = 0

Replay Attack for Hierarchical Framework

Replay Attack for Hierarchical Framework

• Key fact: Oblivious hash tables are oblivious only if lookups are non-recurrent.

Replay Attack for Hierarchical Framework

• Key fact: Oblivious hash tables are oblivious only if lookups are non-recurrent.

• If you look up the same twice in some without rebuilding in
between, access pattern to will be identical – not oblivious.

𝖺𝖽𝖽𝗋 𝖧i
𝖧i

Replay Attack for Hierarchical Framework

• Key fact: Oblivious hash tables are oblivious only if lookups are non-recurrent.

• If you look up the same twice in some without rebuilding in
between, access pattern to will be identical – not oblivious.

𝖺𝖽𝖽𝗋 𝖧i
𝖧i

• In honest-but-curious setting, looking up dummies and rebuilding hash
tables ensures reads will be non-recurrent.

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺3

Read :𝖺𝖽𝖽𝗋

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Look for in 𝖺𝖽𝖽𝗋 𝖧3

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Keep 𝖽𝖺𝗍𝖺3

Read :𝖺𝖽𝖽𝗋

…

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Look for in 𝖺𝖽𝖽𝗋 𝖧3 Dummy lookup in 𝖧log N

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Write back to 𝖧1

Read :𝖺𝖽𝖽𝗋

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋 (𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋

Not found!

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Dummy lookup in 𝖧2

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋

Not found!

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Dummy lookup in 𝖧2

Dummy lookup in 𝖧3

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

…

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋

Not found!

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Look for in 𝖺𝖽𝖽𝗋 𝖧3

Dummy lookup in 𝖧2

Dummy lookup in 𝖧3

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋

Exact same
access pattern
as first query!

Leaks repeated
address.

Not found!

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Look for in 𝖺𝖽𝖽𝗋 𝖧3

Dummy lookup in 𝖧2

Dummy lookup in 𝖧3

Replay Attack
𝖧1 𝖧2 𝖧3 𝖧log N

Lookup
Phase

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Read :𝖺𝖽𝖽𝗋

Write to :𝖺𝖽𝖽𝗋

Exact same
access pattern
as first query!

Leaks repeated
address.

Not found!

(𝖺𝖽𝖽𝗋, 𝖽𝖺𝗍𝖺3)

Obliviousness
of lookups
depends on

correctness of
 lookups!

𝖧i

𝖧<i

Look for in 𝖺𝖽𝖽𝗋 𝖧1

Look for in 𝖺𝖽𝖽𝗋 𝖧2

Look for in 𝖺𝖽𝖽𝗋 𝖧3

Replay Attack for Hierarchical

• As is, the hierarchical paradigm with MACs is susceptible
to replay attacks, so it’s still maliciously insecure.

Replay Attack for Hierarchical

• As is, the hierarchical paradigm with MACs is susceptible
to replay attacks, so it’s still maliciously insecure.

• Is there a fix?

General Fix For Replay Attacks: Time-Stamping
• [Ostrovsky ’90, Goldreich-Ostrovsky ’96] noticed that time-stamping is

sufficient to prevent replay attacks with MACs (in their ORAM).O(log3 N)

General Fix For Replay Attacks: Time-Stamping
• [Ostrovsky ’90, Goldreich-Ostrovsky ’96] noticed that time-stamping is

sufficient to prevent replay attacks with MACs (in their ORAM).O(log3 N)
• Time-stamping:

General Fix For Replay Attacks: Time-Stamping
• [Ostrovsky ’90, Goldreich-Ostrovsky ’96] noticed that time-stamping is

sufficient to prevent replay attacks with MACs (in their ORAM).O(log3 N)
• Time-stamping:
• Keep track of global counter , counting the number of ’s so

far.
𝖼𝗍𝗋 ̂𝗊𝗎𝖾𝗋𝗒

General Fix For Replay Attacks: Time-Stamping
• [Ostrovsky ’90, Goldreich-Ostrovsky ’96] noticed that time-stamping is

sufficient to prevent replay attacks with MACs (in their ORAM).O(log3 N)
• Time-stamping:
• Keep track of global counter , counting the number of ’s so

far.
𝖼𝗍𝗋 ̂𝗊𝗎𝖾𝗋𝗒

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

General Fix For Replay Attacks: Time-Stamping
• [Ostrovsky ’90, Goldreich-Ostrovsky ’96] noticed that time-stamping is

sufficient to prevent replay attacks with MACs (in their ORAM).O(log3 N)
• Time-stamping:
• Keep track of global counter , counting the number of ’s so

far.
𝖼𝗍𝗋 ̂𝗊𝗎𝖾𝗋𝗒

• Theorem [GO ’96]: If ORAM has local, low-space computable
, then MACs + time-stamping converts honest-but-curious

ORAM to maliciously secure ORAM with the same asymptotic overhead.
𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3)

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3) 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3) 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

 𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾(𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋𝟥) = 𝖼𝗍𝗋3

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3)

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3) 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋) := most recent time (up until)
when has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽(̂𝖺𝖽𝖽𝗋3) 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽

Since ,

replay attack detected!

𝖼𝗍𝗋𝗈𝗅𝖽 < 𝖼𝗍𝗋3 = 𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾(𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋𝟥)

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Time-Stamping is Hard

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

1

p1

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

11

p1p2

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

11 1

p1p2 p3

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

11 11 1 11

p4 p1p2 p3p5 p6p7

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

• Setup: Mark positions as visited when given online way for .pi ∈ [N] 1 ≤ i ≤ N/2

11 11 1 11

p4 p1p2 p3p5 p6p7

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

• Setup: Mark positions as visited when given online way for .pi ∈ [N] 1 ≤ i ≤ N/2

• If you can time-stamp this access pattern, you can recover all .pi

11 11 1 11

p4 p1p2 p3p5 p6p7

Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

• Setup: Mark positions as visited when given online way for .pi ∈ [N] 1 ≤ i ≤ N/2

• If you can time-stamp this access pattern, you can recover all .pi

• Random sequence of has entropy , so no way to time-stamp with even bits
of space, let alone bits.

pi Θ(N log N) O(N)
O(log N)

11 11 1 11

p4 p1p2 p3p5 p6p7

Summary of Technique #1: MACs

Summary of Technique #1: MACs
• With MACs, hierarchical ORAM is susceptible to replay attacks.

Summary of Technique #1: MACs
• With MACs, hierarchical ORAM is susceptible to replay attacks.

• Time-stamping can prevent replay attacks.

Summary of Technique #1: MACs
• With MACs, hierarchical ORAM is susceptible to replay attacks.

• Time-stamping can prevent replay attacks.

• Time-stamping is possible for [Goldreich-Ostrovsky ’96] but not
OptORAMa (or PanORAMa).

Summary of Technique #1: MACs
• With MACs, hierarchical ORAM is susceptible to replay attacks.

• Time-stamping can prevent replay attacks.

• Time-stamping is possible for [Goldreich-Ostrovsky ’96] but not
OptORAMa (or PanORAMa).

• We need another technique for malicious security!

Technique #2: Memory Checking

Technique #2: Memory Checking
• A Memory Checker (MC) is a protocol that detects whether a malicious

server tampered with RAM. [Blum, Evans, Gemmell, Kannan, Naor ’94]

Technique #2: Memory Checking

User

Server

MC

Technique #2: Memory Checking

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct
responses.

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct
responses.

Abort

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct
responses.

Abort

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct
responses.

• Completeness: If the server behaved honestly, MC doesn’t abort.

Abort

User

Server

MC
 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct
responses.

• Completeness: If the server behaved honestly, MC doesn’t abort.

Abort

User

Server

MC

Exact same properties as
maliciously secure ORAM,
except no obliviousness.

 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾

Memory Checking Efficiency

Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency

metrics (local space trivial). For local space:N O(1)

Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency

metrics (local space trivial). For local space:N O(1)

• Memory checking with overhead implies OWF.o(N) [Naor-Rothblum ’05]

Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency

metrics (local space trivial). For local space:N O(1)

• Memory checking with overhead implies OWF.o(N)

• Best known constructions have overhead.*O(log N)

*More accurately, bandwidth (in terms of bits), not overhead (in case word sizes differ).

[Naor-Rothblum ’05]

[Blum et al. ’94]

Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency

metrics (local space trivial). For local space:N O(1)

• Memory checking with overhead implies OWF.o(N)

• Best known constructions have overhead.*O(log N)

• E.g., Merkle trees. Store Merkle root and access paths in binary tree.

*More accurately, bandwidth (in terms of bits), not overhead (in case word sizes differ).

[Naor-Rothblum ’05]

[Blum et al. ’94]

Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency

metrics (local space trivial). For local space:N O(1)

• Memory checking with overhead implies OWF.o(N)

• Best known constructions have overhead.*O(log N)

• E.g., Merkle trees. Store Merkle root and access paths in binary tree.

• Lower bound of overhead for deterministic, non-
adaptive memory checkers (which the existing constructions are).

Ω(log N/log log N)

*More accurately, bandwidth (in terms of bits), not overhead (in case word sizes differ).

[Naor-Rothblum ’05]

[Dwork-Naor-
Rothblum-
Vaikuntanathan ’09]

[Blum et al. ’94]

Technique #2: Memory Checking

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

Technique #2: Memory Checking

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.

Technique #2: Memory Checking

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Technique #2: Memory Checking

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Technique #2: Memory Checking

Abort

User

Server

MCORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Technique #2: Memory Checking

Abort

User

Server

MCORAM

Mal. Secure ORAM

• Intuitively, memory checking seems to solve the issue of a tampering
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Technique #2: Memory Checking

Abort

User

Server

MCORAM

Mal. Secure ORAM

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log N

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log N log N

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log N log Nlog2(N)

Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

• Do we really need a memory checker? Does a weaker compiler suffice?

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log N log Nlog2(N)

Technique #2: Memory Checking

Abort

User

Server

ΠORAM
Mal. Secure ORAM

Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If compiles any honest-but-curious ORAM into a
maliciously secure ORAM with overhead blowup in this way, then is a
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM

*Slight weakening that is also sufficient for
converting honest-but-curious to malicious ORAM.

Proof: If not memory checker, construct ORAM to force a mistake from .Π Π

Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If compiles any honest-but-curious ORAM into a
maliciously secure ORAM with overhead blowup in this way, then is a
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM

*Slight weakening that is also sufficient for
converting honest-but-curious to malicious ORAM.

Proof: If not memory checker, construct ORAM to force a mistake from .Π Π

Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If compiles any honest-but-curious ORAM into a
maliciously secure ORAM with overhead blowup in this way, then is a
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM

*Slight weakening that is also sufficient for
converting honest-but-curious to malicious ORAM.

Proof: If not memory checker, construct ORAM to force a mistake from .Π Π

Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If compiles any honest-but-curious ORAM into a
maliciously secure ORAM with overhead blowup in this way, then is a
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM

*Slight weakening that is also sufficient for
converting honest-but-curious to malicious ORAM.

Proof: If not memory checker, construct ORAM to force a mistake from .Π Π

Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If compiles any honest-but-curious ORAM into a
maliciously secure ORAM with overhead blowup in this way, then is a
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM

*Slight weakening that is also sufficient for
converting honest-but-curious to malicious ORAM.

Summary of Barriers

Summary of Barriers
1. Message Authentication Codes (MACs)

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

2. Memory Checking (MC)

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

2. Memory Checking (MC)

• -blowup post-compiler is equivalent to an -overhead memory
checker.
O(1) O(1)

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

2. Memory Checking (MC)

• -blowup post-compiler is equivalent to an -overhead memory
checker.
O(1) O(1)

• Best memory checkers have overhead, so seems unlikely.O(log N)

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

2. Memory Checking (MC)

• -blowup post-compiler is equivalent to an -overhead memory
checker.
O(1) O(1)

• Best memory checkers have overhead, so seems unlikely.O(log N)

How can we proceed?

Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM
constructions, OptORAMa can’t be time-stamped to prevent replay
attacks.

2. Memory Checking (MC)

• -blowup post-compiler is equivalent to an -overhead memory
checker.
O(1) O(1)

• Best memory checkers have overhead, so seems unlikely.O(log N)

How can we proceed?

We have to handle OptORAMa in a white-box way!

Does OptORAMa really need memory checking?

User

Server

ORAM

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

User

Server

ORAM

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

Server

ORAM

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

Server

ORAM

?

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

Server

ORAM

?

Maybe server lied, but
I'll handle it later!

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

Server

ORAM

response

?

Maybe server lied, but
I'll handle it later!

Abort

Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

• Our Idea: Use weaker, more efficient notion of memory checking to
capitalize on this!

User
𝗊𝗎𝖾𝗋𝗒

̂𝗊𝗎𝖾𝗋𝗒

Server

ORAM

response

?

Maybe server lied, but
I'll handle it later!

Abort

Offline Memory Checking

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

Offline Memory Checking
[Blum et
al. ’94]

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

?

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

?

?

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

?

?

done

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

?

?

done

• An Offline Memory Checker (OMC) is a memory checker with a weaker
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et
al. ’94]

User
Server

OMC

?

?

done

“all correct”
or “abort”

Offline Memory Checking
• Benefit of offline memory checking: constructions with (amortized)

overhead!
O(1)

[Blum et al. ’94]
[Dwork et al. ’09]

Offline Memory Checking
• Benefit of offline memory checking: constructions with (amortized)

overhead!
O(1)

• Con of offline memory checking: insufficient! Insecure for OptORAMa.

Offline Memory Checking
• Benefit of offline memory checking: constructions with (amortized)

overhead!
O(1)

• Con of offline memory checking: insufficient! Insecure for OptORAMa.

• Replay attack (with MACs and offline memory checking) still applies.

Offline Memory Checking
• Benefit of offline memory checking: constructions with (amortized)

overhead!
O(1)

• Con of offline memory checking: insufficient! Insecure for OptORAMa.

• Replay attack (with MACs and offline memory checking) still applies.

• So when is offline checking safe?

When is Offline Checking Safe?
In

pu
ts

When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

In
pu

ts

When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

• Can locally compute all comparisons to be
made.

In
pu

ts

When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

• Can locally compute all comparisons to be
made.

• Incorrect wire values do not affect the
comparisons made, so access pattern is
not affected.

In
pu

ts

When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

• Can locally compute all comparisons to be
made.

• Incorrect wire values do not affect the
comparisons made, so access pattern is
not affected.

• Safe to offline-check!

In
pu

ts

When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

• Can locally compute all comparisons to be
made.

• Incorrect wire values do not affect the
comparisons made, so access pattern is
not affected.

• Safe to offline-check!

• In our work, we generalise this further to
capture more classes of algorithms.

In
pu

ts

Making OptORAMa Maliciously Secure

Making OptORAMa Maliciously Secure
• In an ideal world:

Making OptORAMa Maliciously Secure
• In an ideal world:

• Time-stamp whatever you can using MACs (with no overhead).

Making OptORAMa Maliciously Secure
• In an ideal world:

• Time-stamp whatever you can using MACs (with no overhead).

• Hope that everything else in OptORAMa is offline-safe.

Making OptORAMa Maliciously Secure
• In an ideal world:

• Time-stamp whatever you can using MACs (with no overhead).

• Hope that everything else in OptORAMa is offline-safe.

• Unfortunately, this isn’t true.

Making OptORAMa Maliciously Secure
• In an ideal world:

• Time-stamp whatever you can using MACs (with no overhead).

• Hope that everything else in OptORAMa is offline-safe.

• Unfortunately, this isn’t true.

• Oblivious hash table of OptORAMa is not time-stampable or offline-
safe.

Our Construction

Our Construction
• How do we get around this?

Our Construction
• How do we get around this?

• We combine time-stamping and offline checking within algorithms!

Balls-in-Bins Hashing

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

(v1, b1)
(v2, b2)
(v3, b3)

…

Bins

Balls

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

(v1, b1)
(v2, b2)
(v3, b3)

…

Bins

Balls

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

(v1, b1)
(v2, b2)
(v3, b3)

b1v1

b1

…

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

v1

v2

b2 …

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

b3

…

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

• If array is tampered to include ciphertext of
private , then access pattern leaks ! Not offline-safe!

{(vi, bi)}
xi xi

(v1, b1)
(v2, b2)
(v3, b3)

…

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

• If array is tampered to include ciphertext of
private , then access pattern leaks ! Not offline-safe!

{(vi, bi)}
xi xi

(v2, b2)
(v3, b3)

(v1, x1)

…

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

• If array is tampered to include ciphertext of
private , then access pattern leaks ! Not offline-safe!

{(vi, bi)}
xi xi

(v2, b2)
(v3, b3)

(v1, x1)

x1

x1v1

…

Balls-in-Bins Hashing

• Example: Hashing balls (values into bins ().vi) bi

• Used in building OptORAMa oblivious hash tables.

• If is safe to leak, access pattern is determined by
 array. Only leaked.

bi
{(vi, bi)} bi

• If array is tampered to include ciphertext of
private , then access pattern leaks ! Not offline-safe!

{(vi, bi)}
xi xi

• But offline-safe if is not tampered with.{(vi, bi)}

(v2, b2)
(v3, b3)

(v1, x1)

x1

x1v1

…

Combining Time-Stamping + Offline Checking
(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}
(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}
(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

Offline check!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

• Summary:

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

Offline check!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

• Summary:

• Time-stamp the part that needs to be tamper-
proof (e.g., array).{(vi, bi)}

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

Offline check!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

• Summary:

• Time-stamp the part that needs to be tamper-
proof (e.g., array).{(vi, bi)}

• Offline check the rest.

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

Offline check!

…

Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp array,
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

• Summary:

• Time-stamp the part that needs to be tamper-
proof (e.g., array).{(vi, bi)}

• Offline check the rest.

• Converts honest-but-curious to malicious
security!

(v1, b1)
(v2, b2)
(v3, b3)

b1

b2

b3

v1

v2

v3

Time-stamp!

Offline check!

…

Summary & Conclusion

Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal

 overhead and local space.O(log N) O(1)

Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal

 overhead and local space.O(log N) O(1)

• Another interpretation: First oblivious memory checker with
overhead, matching best non-oblivious memory checker overhead.

O(log N)

Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal

 overhead and local space.O(log N) O(1)

• Another interpretation: First oblivious memory checker with
overhead, matching best non-oblivious memory checker overhead.

O(log N)

• Assumptions are provably minimal (OWF necessary and sufficient).

Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal

 overhead and local space.O(log N) O(1)

• Another interpretation: First oblivious memory checker with
overhead, matching best non-oblivious memory checker overhead.

O(log N)

• Assumptions are provably minimal (OWF necessary and sufficient).

• An overhead-preserving compiler from honest-but-curious to malicious
security has a barrier.

Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal

 overhead and local space.O(log N) O(1)

• Another interpretation: First oblivious memory checker with
overhead, matching best non-oblivious memory checker overhead.

O(log N)

• Assumptions are provably minimal (OWF necessary and sufficient).

• An overhead-preserving compiler from honest-but-curious to malicious
security has a barrier.

• Instead, we develop memory checking techniques in the ORAM setting that
should generalize to future constructions.

Open Questions

Open Questions

• Any maliciously secure ORAM with overhead
with better constant factors? OptORAMa has large
constant factors.

O(log N)

Open Questions

• Any maliciously secure ORAM with overhead
with better constant factors? OptORAMa has large
constant factors.

O(log N)

• Any memory checker with overhead? Any lower
bounds? (Best constructions have overhead.)

O(1)
O(log N)

Thank you!

Bonus Slides

Ideal Malicious Security

Ideal Malicious Security
• What guarantee do we want?

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

User

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

Ideal

RAM

User

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

2. Obliviousness: Server shouldn’t be
able to learn anything, even by
tampering. Server should only be
able to:

Server

𝖲𝗂𝗆

Abort

Ideal

RAM

Simulator
doesn’t see
user queries!

User

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

2. Obliviousness: Server shouldn’t be
able to learn anything, even by
tampering. Server should only be
able to:

A. Learn number of queries.

Server

𝖲𝗂𝗆

Abort

Ideal

RAM

Simulator
doesn’t see
user queries!

User

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

2. Obliviousness: Server shouldn’t be
able to learn anything, even by
tampering. Server should only be
able to:

A. Learn number of queries.

B. Decide whether to abort.

Server

𝖲𝗂𝗆

Abort

Ideal

RAM

Simulator
doesn’t see
user queries!

User

Ideal Malicious Security
• What guarantee do we want?

1. Correctness: If no abort, user
should never get incorrect responses
from ORAM, even if server tampers.

2. Obliviousness: Server shouldn’t be
able to learn anything, even by
tampering. Server should only be
able to:

A. Learn number of queries.

B. Decide whether to abort.

Server

𝖲𝗂𝗆

Abort

Ideal

RAM

Simulator
doesn’t see
user queries!

Ideal Server

Real Ideal
Server

𝖲𝗂𝗆

Abort

Ideal

RAM

User

Real Ideal
Server

𝖲𝗂𝗆

Abort

Ideal

RAM

UserUser

Server

ORAM

Abort

Real Ideal
Server

𝖲𝗂𝗆

Abort

Ideal

RAMServer

ORAM

Abort

User User

Real IdealEnv. Env.

Server

𝖲𝗂𝗆

Abort

Ideal

RAMServer

ORAM

Abort

User User

Real IdealEnv. Env.

Server

𝖲𝗂𝗆

Abort

Our Definition: ORAM is maliciously secure if such that for all , ∃𝖲𝗂𝗆 𝖱𝖾𝖺𝗅 ≈𝖼𝗈𝗆𝗉 𝖨𝖽𝖾𝖺𝗅

Ideal

RAMServer

ORAM

Abort

User User

Real IdealEnv. Env.

Server

𝖲𝗂𝗆

Abort

Our Definition: ORAM is maliciously secure if such that for all , ∃𝖲𝗂𝗆 𝖱𝖾𝖺𝗅 ≈𝖼𝗈𝗆𝗉 𝖨𝖽𝖾𝖺𝗅
(and ORAM doesn’t abort against an honest server).

Ideal

RAMServer

ORAM

Abort

User User

Hierarchical Efficiency

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

*Ignoring cuckoo
hash-table stashes.

[Goodrich-
Mitzenmacher ’11]

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

• Amortized ORAM overhead over queries:≥ N

O (log N) + ∑
i∈[log N]

1
2i

⋅ T (2i)

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

• Amortized ORAM overhead over queries:≥ N

O (log N) + ∑
i∈[log N]

1
2i

⋅ T (2i)

Lookup

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

• Amortized ORAM overhead over queries:≥ N

O (log N) + ∑
i∈[log N]

1
2i

⋅ T (2i)

Lookup Rebuild

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

• Amortized ORAM overhead over queries:≥ N

• If , then this becomes !T (2i) = O (2i) O(log N)

O (log N) + ∑
i∈[log N]

1
2i

⋅ T (2i)
[OptORAMa, AKLNPS ’20]

Hierarchical Efficiency
• Each lookup takes ’s using oblivious cuckoo hashing.*𝖧i O(1) ̂𝗊𝗎𝖾𝗋𝗒

• Iterating over , the Lookup Phase takes ’s.i ∈ [log N] O(log N) ̂𝗊𝗎𝖾𝗋𝗒

• Suppose the Rebuild Phase happening every steps takes ’s.2i T (2i) ̂𝗊𝗎𝖾𝗋𝗒

• Amortized ORAM overhead over queries:≥ N

• If , then this becomes !T (2i) = O (2i) O(log N)

O (log N) + ∑
i∈[log N]

1
2i

⋅ T (2i)
[OptORAMa, AKLNPS ’20]

Quite difficult! Long line of work to get this efficiency.

Replay Attack for Hierarchical

• As is, the hierarchical paradigm with MACs is susceptible
to replay attacks, so it’s still maliciously insecure.

Replay Attack for Hierarchical

• As is, the hierarchical paradigm with MACs is susceptible
to replay attacks, so it’s still maliciously insecure.

• Is there a fix?

When is Offline Checking Safe?
Access-Deterministic

When is Offline Checking Safe?
Access-Deterministic

• Definition: A subroutine is access-deterministic if is deterministic and
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

When is Offline Checking Safe?
Access-Deterministic

• Definition: A subroutine is access-deterministic if is deterministic and
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

• In general, access-deterministic subroutines may not be offline-safe against
adversarial servers. Nonetheless:

When is Offline Checking Safe?
Access-Deterministic

• Definition: A subroutine is access-deterministic if is deterministic and
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

• In general, access-deterministic subroutines may not be offline-safe against
adversarial servers. Nonetheless:

Theorem [MV ’23]: If a subroutine is access-deterministic, then it can be made
maliciously secure with the same asymptotic overhead.

When is Offline Checking Safe?
Access-Deterministic

• Definition: A subroutine is access-deterministic if is deterministic and
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

• In general, access-deterministic subroutines may not be offline-safe against
adversarial servers. Nonetheless:

Theorem [MV ’23]: If a subroutine is access-deterministic, then it can be made
maliciously secure with the same asymptotic overhead.

• Idea: Use offline-checking to pre-process a data-structure for the algorithm,
and use this to time-stamp the algorithm.

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾

When is Offline Checking Safe?
Access-Deterministic

• Definition: A subroutine is access-deterministic if is deterministic and
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

• In general, access-deterministic subroutines may not be offline-safe against
adversarial servers. Nonetheless:

Theorem [MV ’23]: If a subroutine is access-deterministic, then it can be made
maliciously secure with the same asymptotic overhead.

• Idea: Use offline-checking to pre-process a data-structure for the algorithm,
and use this to time-stamp the algorithm.

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾

• Can be viewed as a strengthening of Goldreich-Ostrovsky’s time-stamping theorem!

Why Access-Deterministic Algorithms
May Not Be Offline-Safe

• Consider the following implementation of an AKS sort.

1. Use server space to compute and store a bipartite expander
.

2. Iterate over edge set , and make comparisons according to .

• If the contents of are replaced with secret data, the secret data will be
leaked!

G = (V, E)

E E

E

Offline Memory Checking

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

Offline Memory Checking

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

Offline Memory Checking

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

• Initialize the array so that all , and initialize a local counter .𝖼𝗍𝗋i = 0 T

Offline Memory Checking

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

• Initialize the array so that all , and initialize a local counter .𝖼𝗍𝗋i = 0 T

• Every time an index is accessed, increment (on the remote server), and increment local counter i 𝖼𝗍𝗋i T .

Offline Memory Checking

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

All entries are MAC’ed

Current time: 𝖼𝗍𝗋

• Initialize the array so that all , and initialize a local counter .𝖼𝗍𝗋i = 0 T

• Every time an index is accessed, increment (on the remote server), and increment local counter i 𝖼𝗍𝗋i T .

• At the end of the execution, iterate over the array and accept if and only if . ∑
i

𝖼𝗍𝗋i = T

