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Remote RAM Computation
• User wants to perform RAM 

computation, but doesn’t 
have enough local space.

• Solution: Use remote RAM 
server.

• How can the user ensure 
privacy of its computation 
against a curious server?
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• One idea to ensure privacy: 

Encrypt the data (private key)

• Problem: Encryption is 
insufficient (access patterns 
reveal private information!)

• Example: Medical study

• RAM addresses in accesses 
can reveal private information!
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Many patients 
have heart issues!
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• Secure Hardware Enclaves (e.g., Intel SGX) allow users to execute programs 
securely on untrusted remote servers.

• Some enclaves have tiny internal space. Use untrusted memory within the server!

Application: Secure Hardware Enclaves

User Intel SGX

• Real World: Signal very recently implemented 
ORAM for private contact discovery!

ORAM
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• Private Information Retrieval (PIR) is similar to ORAM but has crucial 

differences:

• In PIR, the database is typically public. 

• Unlike ORAM, PIR allows many clients to access database.

• PIR (usually) not stateful, and is typically read-only (not updatable).
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ORAM Efficiency
Two main complexity measures for ORAMs:

1. Local Space: Amount of space the ORAM can store locally (trusted & 
private).

• For a RAM with  entries, space  is trivial (can store the full RAM itself).N N

• For the rest of the talk, think space  words (of size ).O(1) ≈ log(N)
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𝗊𝗎𝖾𝗋𝗒

ORAM
̂𝗊𝗎𝖾𝗋𝗒

response

ServerOverhead

2.  Overhead: Number of queries made to the server per user query.

• For a RAM with  entries, overhead  is trivial (always do a linear scan).N N
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ORAM History
RAM of size , word size , local space size N Θ(log N) O(1)

Work Overhead

[Goldreich ’87]

[Ostrovsky ’90, Goldreich-Ostrovsky ’96]

Path ORAM [SvDSCFRYD ’12]

PanORAMa [Patel-Persiano-Raykova-Yeo ’18]

OptORAMa [AKLNPS ‘20, AKLS ’21]

Lower Bound: [Goldreich ’87, Larsen-Nielsen ’18, Komargodski-Lin ’21]

N log N

log3 N

log2 N

log N log log N

log N

Ω (log N)
Optimal!
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O(log N)

O(1)

• As before,  overhead is optimal – malicious security for free!O(log N)

• Maliciously secure ORAM still in passive storage model! No extra work for honest server.

• OWFs are also necessary for maliciously secure ORAM.

• In private random oracle model, we get statistical malicious security against unbounded 
adversaries.

[Naor, Rothblum ’05]
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Starting Point

We start with OptORAMa [Asharov, Komargodski, 
Lin, Nayak, Peserico, Shi] - a honest-but-curious 

ORAM with optimal  overhead.O(log N)
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Technique #1: MACs
• MACs are insufficient because the server can do replay attacks.
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• In honest-but-curious setting, looking up dummies and rebuilding hash 
tables ensures reads will be non-recurrent. 
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All entries are MAC’ed

Current time: 𝖼𝗍𝗋
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𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽( ̂𝖺𝖽𝖽𝗋3 ) 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3
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Current time: 𝖼𝗍𝗋
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𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽( ̂𝖺𝖽𝖽𝗋3 ) 𝖽𝖺𝗍𝖺3, 𝖼𝗍𝗋3

All entries are MAC’ed

Current time: 𝖼𝗍𝗋
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𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋
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Current time: 𝖼𝗍𝗋
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𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽( ̂𝖺𝖽𝖽𝗋3 )

All entries are MAC’ed

Current time: 𝖼𝗍𝗋



Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽( ̂𝖺𝖽𝖽𝗋3 ) 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽

All entries are MAC’ed

Current time: 𝖼𝗍𝗋



Time-Stamping

𝖽𝖺𝗍𝖺1, 𝖼𝗍𝗋1 𝖽𝖺𝗍𝖺2, 𝖼𝗍𝗋2 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽 𝖽𝖺𝗍𝖺4, 𝖼𝗍𝗋4 𝖽𝖺𝗍𝖺5, 𝖼𝗍𝗋5 𝖽𝖺𝗍𝖺6, 𝖼𝗍𝗋6 𝖽𝖺𝗍𝖺7, 𝖼𝗍𝗋7

̂𝖺𝖽𝖽𝗋1 ̂𝖺𝖽𝖽𝗋3 ̂𝖺𝖽𝖽𝗋4̂𝖺𝖽𝖽𝗋2 ̂𝖺𝖽𝖽𝗋5 ̂𝖺𝖽𝖽𝗋6 ̂𝖺𝖽𝖽𝗋7

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾 (𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋 ) := most recent time (up until ) 
when  has been written to.

𝖼𝗍𝗋̂𝖺𝖽𝖽𝗋

𝗋𝖾𝖺𝖽( ̂𝖺𝖽𝖽𝗋3 ) 𝖽𝖺𝗍𝖺𝗈𝗅𝖽, 𝖼𝗍𝗋𝗈𝗅𝖽

Since ,

replay attack detected!

𝖼𝗍𝗋𝗈𝗅𝖽 < 𝖼𝗍𝗋3 = 𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾(𝖼𝗍𝗋, ̂𝖺𝖽𝖽𝗋𝟥 )

All entries are MAC’ed

Current time: 𝖼𝗍𝗋
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Time-Stamping is Hard
• Unfortunately, the recent hierarchical ORAM constructions cannot be time-stamped

• Unconditionally requires  bits of local space to time-stamp OptORAMa.Ω(N)

• Example: Marking (appears in oblivious hash tables in PanORAMa and OptORAMa)

• Setup: Mark positions  as visited when given online way for .pi ∈ [N] 1 ≤ i ≤ N/2

• If you can time-stamp this access pattern, you can recover all .pi

• Random sequence of  has entropy , so no way to time-stamp with even  bits 
of space, let alone  bits.

pi Θ(N log N) O(N)
O(log N)

11 11 1 11

p4 p1p2 p3p5 p6p7
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Summary of Technique #1: MACs
• With MACs, hierarchical ORAM is susceptible to replay attacks.

• Time-stamping can prevent replay attacks.

• Time-stamping is possible for [Goldreich-Ostrovsky ’96] but not 
OptORAMa (or PanORAMa).

• We need another technique for malicious security!
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Technique #2: Memory Checking
• A Memory Checker (MC) is a protocol that detects whether a malicious 

server tampered with RAM. [Blum, Evans, Gemmell, Kannan, Naor ’94]
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responses. 
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• Correctness: For any PPT malicious server, MC either aborts or gives correct 
responses. 

• Completeness: If the server behaved honestly, MC doesn’t abort.
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Technique #2: Memory Checking

• Correctness: For any PPT malicious server, MC either aborts or gives correct 
responses. 

• Completeness: If the server behaved honestly, MC doesn’t abort.

Abort

User

Server

MC

Exact same properties as 
maliciously secure ORAM, 
except no obliviousness.

 query𝗋𝖾𝖺𝖽/𝗐𝗋𝗂𝗍𝖾
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Memory Checking Efficiency
• Just like ORAM, local space and overhead are two main efficiency 

metrics (local space  trivial). For  local space:N O(1)

• Memory checking with  overhead implies OWF.o(N)

• Best known constructions have  overhead.*O(log N)

• E.g., Merkle trees. Store Merkle root and access paths in binary tree.

• Lower bound of  overhead for deterministic, non-
adaptive memory checkers (which the existing constructions are).  

Ω(log N/log log N)

*More accurately, bandwidth (in terms of bits), not overhead (in case word sizes differ).

[Naor-Rothblum ’05]

[Dwork-Naor-
Rothblum-
Vaikuntanathan ’09]

[Blum et al. ’94]
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• Intuitively, memory checking seems to solve the issue of a tampering 
adversary.

• Theorem: Honest-but-curious ORAM + MC = maliciously secure ORAM.
• Idea:

Technique #2: Memory Checking

Abort
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Server

MCORAM

Mal. Secure ORAM
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Technique #2: Memory Checking
• Great! But this isn’t efficient enough.
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Technique #2: Memory Checking
• Great! But this isn’t efficient enough.

• Do we really need a memory checker? Does a weaker compiler suffice?

𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖬𝖺𝗅) = 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖮𝖱𝖠𝖬𝖧𝖡𝖢) ⋅ 𝖮𝗏𝖾𝗋𝗁𝖾𝖺𝖽(𝖬𝖢)

log N log Nlog2(N)
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Technique #2: Memory Checking
Theorem [M.-Vafa ’23]: If  compiles any honest-but-curious ORAM into a 
maliciously secure ORAM with overhead blowup  in this way, then  is a 
memory checker* with overhead .

Π
ℓ Π

ℓ

Abort

User

Server

ΠORAM
Mal. Secure ORAM
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Summary of Barriers
1. Message Authentication Codes (MACs)

• Replay attack in hierarchical setting breaks obliviousness.

• Time-stamping prevents replay attack, but unlike older ORAM 
constructions, OptORAMa can’t be time-stamped to prevent replay 
attacks.

2. Memory Checking (MC)

• -blowup post-compiler is equivalent to an -overhead memory 
checker.
O(1) O(1)

• Best memory checkers have  overhead, so seems unlikely.O(log N)

How can we proceed?

We have to handle OptORAMa in a white-box way!
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Does OptORAMa really need memory checking?
• What if OptORAMa can tolerate some lies from the server?

• Our Idea: Use weaker, more efficient notion of memory checking to 
capitalize on this!
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• An Offline Memory Checker (OMC) is a memory checker with a weaker 
correctness condition:

• Just needs to abort by the end – intermediate responses from the OMC 
may be incorrect! (Think “batching” a regular memory checker.)

Offline Memory Checking
[Blum et 
al. ’94]
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overhead!
O(1)

• Con of offline memory checking: insufficient! Insecure for OptORAMa.

• Replay attack (with MACs and offline memory checking) still applies.

• So when is offline checking safe?
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When is Offline Checking Safe?
• Eg. Simple sorting networks (e.g. Batcher’s)

• Can locally compute all comparisons to be 
made.

• Incorrect wire values do not affect the 
comparisons made, so access pattern is 
not affected.

• Safe to offline-check!

• In our work, we generalise this further to 
capture more classes of algorithms.

In
pu

ts
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Making OptORAMa Maliciously Secure
• In an ideal world:

• Time-stamp whatever you can using MACs (with no overhead).

• Hope that everything else in OptORAMa is offline-safe.

• Unfortunately, this isn’t true.

• Oblivious hash table of OptORAMa is not time-stampable or offline-
safe.
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Our Construction
• How do we get around this?

• We combine time-stamping and offline checking within algorithms! 
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Balls-in-Bins Hashing

• Example: Hashing balls (values  into bins ( ).vi) bi

• Used in building OptORAMa oblivious hash tables.

• If  is safe to leak, access pattern is determined by
 array. Only  leaked.

bi
{(vi, bi)} bi

• If  array is tampered to include ciphertext of 
private , then access pattern leaks ! Not offline-safe!

{(vi, bi)}
xi xi

• But offline-safe if  is not tampered with.{(vi, bi)}

(v2, b2)
(v3, b3)

(v1, x1)

x1

x1v1

…
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Combining Time-Stamping + Offline Checking

• Key point: If we can time-stamp  array, 
the adversary can no longer tamper with it!

{(vi, bi)}

• Now, the hashing algorithm is offline-safe.

• Summary:

• Time-stamp the part that needs to be tamper-
proof (e.g.,  array).{(vi, bi)}

• Offline check the rest.

• Converts honest-but-curious to malicious 
security!
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Summary & Conclusion
• We construct MacORAMa, a maliciously secure ORAM with optimal 

 overhead and  local space.O(log N) O(1)

• Another interpretation: First oblivious memory checker with  
overhead, matching best non-oblivious memory checker overhead. 

O(log N)

• Assumptions are provably minimal (OWF necessary and sufficient).

• An overhead-preserving compiler from honest-but-curious to malicious 
security has a barrier.

• Instead, we develop memory checking techniques in the ORAM setting that 
should generalize to future constructions.



Open Questions



Open Questions

• Any maliciously secure ORAM with  overhead 
with better constant factors? OptORAMa has large 
constant factors.

O(log N)



Open Questions

• Any maliciously secure ORAM with  overhead 
with better constant factors? OptORAMa has large 
constant factors.

O(log N)

• Any memory checker with  overhead? Any lower 
bounds? (Best constructions have  overhead.)

O(1)
O(log N)



Thank you!
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Our Definition: ORAM is maliciously secure if  such that for all       , ∃𝖲𝗂𝗆 𝖱𝖾𝖺𝗅 ≈𝖼𝗈𝗆𝗉 𝖨𝖽𝖾𝖺𝗅
(and ORAM doesn’t abort against an honest server).
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Quite difficult! Long line of work to get this efficiency.
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Replay Attack for Hierarchical

• As is, the hierarchical paradigm with MACs is susceptible 
to replay attacks, so it’s still maliciously insecure.

• Is there a fix?
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• Definition: A subroutine is access-deterministic if  is deterministic and 
perfectly independent of the input when interacting with an honest server.

{ ̂𝖺𝖽𝖽𝗋 i}

• In general, access-deterministic subroutines may not be offline-safe against 
adversarial servers. Nonetheless:

Theorem [MV ’23]: If a subroutine is access-deterministic, then it can be made 
maliciously secure with the same asymptotic overhead.

• Idea: Use offline-checking to pre-process a  data-structure for the algorithm, 
and use this to time-stamp the algorithm.

𝖯𝗋𝖾𝗏𝖳𝗂𝗆𝖾

• Can be viewed as a strengthening of Goldreich-Ostrovsky’s time-stamping theorem!



Why Access-Deterministic Algorithms 
May Not Be Offline-Safe

• Consider the following implementation of an AKS sort.


1. Use server space to compute and store a bipartite expander 
.


2. Iterate over edge set , and make comparisons according to .


• If the contents of  are replaced with secret data, the secret data will be 
leaked! 

G = (V, E)

E E

E
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